Catalyst systems for polycondensation reactions

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Phosphorus or compound containing same

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S327000, C502S341000, C502S342000, C502S343000, C502S344000, C502S345000, C502S346000, C423S593100, C423S600000, C423S629000

Reexamination Certificate

active

06828272

ABSTRACT:

The invention pertains to new catalyst systems for polycondensation reactions.
The synthesis of polyesters, for example polyethylene terephthalate, requires the use of catalysts in the polycondensation step. The literature contains an abundance of patents describing the use of various catalytically active substances. Today especially antimony and titanium compounds are used on a large industrial scale in the manufacturing of polyethylene terephthalate. This is also reflected in the large number of patents that describe the use of such compounds. Polyester-soluble antimony compounds are described in U.S. Pat. Nos. 3,965,071; 3,998,793; 4,039,515; 4,116,942; 4,133,800; 4,454,312; 5,750,635; and 5,780,575 as polycondensation catalysts. Modified antimony derivatives (stabilization by substances with double bonds to prevent reduction to metallic antimony) are, for example, subjects of U.S. Pat. Nos. 4,067,856; 4,067,857; and 4,130,552. Antimony salts of trimellitic acid esters are likewise used as catalysts in the manufacturing of polyethylene terephthalate (U.S. Pat. No. 5,478,796). Titanium derivatives, especially tetraalkyl titanates, are protected in the U.S. Pat. Nos. 4,039,515; 4,131,601; 4,482,700; 5,066,766; 5,302,690; WO 97/45470; and U.S. Pat. No. 5,744,571. A combination of sulfonic acid, titanate and antimony (or germanium) compound is the subject of U.S. Pat. No. 5,905,136. Germanium compounds are also described as catalysts for the polycondensation reaction (U.S. Pat. No. 5,378,796; 5,830,981; 5,837,786; and 5,837,800). Catalytically active compounds in a polycondensation reaction are likewise borates and acetates of zinc, calcium, cobalt, lead, cadmium, lithium, or sodium (U.S. Pat. No. 4,115,371).
Defined silicon compounds (2-cyanoethyltriethoxysilane and 3-aminopropyltriethoxysilane) are protected in a US Patent (U.S. Pat. No. 4,077,944) as polycondensation catalysts.
The combination of several metal compounds is described in the following patents: U.S. Pat. No. 4,080,317 (Sb/Pb/Zn, Sb/Pb/Ca, Sb/Zn, Sb/Pb/Mg, Sb/Pb/Ca/Mn, Sb/Pb/Ca/Zn, Sb/Pb/Li, Sb/Mn, Ti/Ca, Ge/Ga, Ge/Zn, and Ge/K); U.S. Pat. No. 4,104,263 (Sb(Zr)/Zn(Ca,Mn)); U.S. Pat. No. 4,122,107 (Sb/Zn(Ca,Mn)); U.S. Pat. No. 4,356,299, U.S. Pat. No. 4,501,878, and U.S. Pat. No. 5,286,836 (Ti/Sb); U.S. Pat. No. 4,361,694 (Ti/Si): U.S. Pat. No. 4,468,489 (Ti,Zr,Ge,Zn); U.S. Pat. No. 4,499,226 and U.S. Pat. No. 5,019,640 (Sb/Co); U.S. Pat. No. 5,008,230 (Co(Zn)/Zn(Mn,Mg,Ca)/Sb); U.S. Pat. No. 5,138,024 and U.S. Pat. No. 5,340,909 (Zn/Sb); U.S. Pat. No. 5,565,545 and U.S. Pat. No. 5,644,019 (Sb/Ge); U.S. Pat. No. 5,596,069 (Co/Al); U.S. Pat. No. 5,608,032 and U.S. Pat. No. 5,623,047 (Sb/Co(Mg,Zn,Mn,Pb)); U.S. Pat. No. 5,656,221 (Sb/Co/Mn); U.S. Pat. No. 5,714,570 (Sb/Ti/Zn); and U.S. Pat. No. 5,902,873 (Ti(Zr)/lanthanide). At least one constituent of these complex catalysts is a “classical” polycondensation catalyst, either antimony, titanium, or germanium.
Finely dispersed titanates are the subject of U.S. Pat. No. 5,656,716. Jointly precipitated titanium and silicon compounds and titanium and zirconium compounds are described in U.S. Pat. Nos. 5,684,116 and 5,789,528.
A polycondensation catalyst on the basis of zeolites (alkali or alkaline earth metal-modified aluminosilicate) is protected in U.S. Pat. No. 5,733,969. The use of titanium compounds leads to yellowing of the polyester produced during polycondensation and processing. Especially during the use of polyethylene terephthalate as a food packaging, this color is undesirable.
The use of antimony as a catalyst is permitted only within precisely established boundaries, since this substance, as a heavy metal, is physiologically problematic.
The goal of this invention is to discover a catalyst system for the polycondensation, especially of polyethylene terephthalate, polybutylene terephthalate, or polytrimethylene terephthalate, which is physiologically safe and makes it possible to use the polycondensation products for food packaging. In terms of catalytic activity in polycondensation and selectivity, it must be compatible with conventional catalysts and must not influence the processing properties of polyester at all or only to the desired degree.
Quite surprisingly, it was found that complex compounds with hydrotalcite-analogous structures of the general formula [M(II)
1−x
M(III)
x
(OH)
2
]
x+
(A
n−
x

).mH
2
O, (the use of which was previously described only as a filler (U.S. Pat. No. 5,362,457; U.S. Pat. No. 5,225,115; JP 09 077,962; JP 02 308,848; JP 61 118,457; JP 56 059,864), in olefin isomerizations, as an adsorbents (halogen trapper), as a carrier material for catalysts, flame retardant, molecular sieve, anion exchanger and catalyst for alcohol reactions (isophorone synthesis), hydrogenations, polymerizations, and reforming reactions (F. Cavani, F. Trifiro, A. Vaccari,
Catalysis Today
11 (1991), 173-301)), before or after calcination, alone or in combination with phosphorus compounds that contain at least one hydrolyzable phosphorus-oxygen compound, are excellently suited for catalysis of polycondensation reactions, especially for the production of polyalkylene terephthalate.
In the formula mentioned, M(II) represents divalent metals, preferably Mg or Zn or Ni or Cu or Fe(II) or Co, and M(III) represents trivalent metals, preferably Al and Fe, and A represents anions, preferably carbonates or borates or titanyl compounds.
The particle size of the hydrotalcite used falls in the range of 0.1 to 50 &mgr;m, preferably 0.5 to 5 &mgr;m.
The calcination of the hydrotalcites can be performed at temperatures of 200° C. to 800° C., preferably at 400° C. to 650° C.
As phosphorus compounds which contain at least one hydrolyzable phosphorus-oxygen bond, phosphoric acid esters or esters of phosphorous acid can be used.
The catalyst system in accordance with the invention is used in the concentration ratio of hydrotalcite to phosphorus compound of 1:0.5 to 1:4, preferably 1:1 to 1:2.
The untreated or the calcinated hydrotalcite-analogous derivatives in combination with phosphorus compounds as stabilizers with at least one hydrolyzable phosphorus-oxygen bond show increased catalytic activity and selectivity in comparison to conventional catalysts and are characterized by high food compatibility.
It has been found that these substances, made up of several components, are highly catalytically selective, relatively independent of their composition, although the individual constituents catalyze polycondensation reactions either not at all or only with a very low selectivity and thus generate a high fraction of byproducts. It was also found that with the targeted selection of the constituents, surprisingly it was possible to influence the applications properties of the polyesters, for example the crystallization behavior. The polycondensation with the catalyst system in accordance with the invention is carried out under vacuum in a liquid phase at temperatures of 230° C. to 280° C. or in a solid phase at temperatures of 170 to 240° C.
The addition of phosphorus compounds with at least one hydrolyzable phosphorus-oxygen bond leads to improved thermal stability of the polyesters, especially in the industrially required long residence times of the liquid polyesters under normal pressure in comparison to polyesters produced with conventional [catalysts], for example with catalysts on the basis of antimony and titanium compounds, but also in comparison to products produced under hydrotalcite catalysis.
Through the combination of hydrotalcite-analogous compound/stabilizer, molecular weight degradation and discoloration of the polyester can be lowered significantly without a negative influence on other important processing properties of the polyester, for example the crystallization behavior and the clarity of the final product.
In the following, the invention will be explained on the basis of exemplified embodiments.
In a 250-ml, single-necked flask with agitator and distillation attachment, 100 g precondensate of terephthalic acid and e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalyst systems for polycondensation reactions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalyst systems for polycondensation reactions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst systems for polycondensation reactions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3291812

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.