Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2001-10-12
2003-11-25
Harlan, Robert (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S132000, C526S161000, C502S155000, C502S167000
Reexamination Certificate
active
06653417
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to catalyst precursor compounds having both (i) a polydentate ligand which comprises a cyclic moiety as well as a heteroatom and (ii) a protected hydride/hydrocarbyl ligand linked to a metal atom, to olefin polymerization catalyst systems based thereupon, to polymerization processes using such catalyst systems, and to polymers produced thereby.
BACKGROUND OF THE INVENTION
The intense commercialization of metallocene polyolefin catalysts has led to widespread interest in the design of non-metallocene, homogeneous catalysts. This field is more than an academic curiosity as new, non-metallocene catalysts may provide an easier pathway to currently available products and may also provide product and process opportunities which are beyond the capability of metallocene catalysts. In addition, certain non-cyclopentadienyl ligands may be more economical due to the relative ease of synthesis of a variety of substituted analogs.
Thus there is a need in the art for new olefin polymerization catalysts and the polymers they produce. This invention identifies a new family of catalysts that can be used to produce polyolefins, particularly polyethylenes.
WO 97/02298, WO 96/33202 and Fuhrmann et al,
Inorg. Chem.
35:6742-6745 (1996), each fully incorporated herein by reference, all disclose nitrogen containing single site like catalyst systems.
WO 99/01460, fully incorporated herein by reference, discloses the use of transition metal compounds comprising bidentate ligands containing pyridine or quinoline moieties and mixtures thereof with activators to polymerize olefins. For example, [[1-(2-pyridyl)N-1-methylethyl]-[1-N-2,6-diisopropylphenylamido]]zirconium tribenzyl is combined with modified methyl alumoxane in the gas phase to produce ethylene/hexene copolymers.
Furthermore, U.S. Pat. No. 6,187,712 B1, fully incorporated herein by reference, discloses a catalyst composition for the polymerization of olefins that comprises a mono- or biscyclopentadienyl catalyst precursor comprising at least one protected hydride and/or protected hydrocarbyl ligand such as tetrahydroborate bound to a metal atom. A typical example of a catalyst precursor disclosed in the patent is methylcyclopentadienylzirconium tris(tetrahydroborate).
It has now been found that transition metal compounds comprising both polydentate, heteroatom containing ligands and protected hydride and/or hydrocarbyl ligands combined with a cocatalyst can effectively catalyze the polymerization of olefins.
SUMMARY OF THE INVENTION
The present invention provides catalyst precursor compound represented by MX
x
Y
y
Z
z
wherein M is a metal selected from Groups 3 to 12 and the lanthanide and actinide series of the Periodic Table of Elements. X represents an anionic moiety of the formula AR
4
, where A represents a Group 13 element, the radicals R are independently selected from carbon containing groups and hydrogen. Also, two radicals R may be combined to form a ring structure together with A. Moreover, at least one of the radicals R bridges A and M. Y is an at least bidentate anionic group represented by (T)
t
—D—(E)
e
—G wherein D is selected from elements of Groups 13 to 16 and is bonded to M. G is a 3- to 30-membered mono- or polycyclic radical and comprises, and is bonded to M through, a heteroatom Q which either is a ring member or is covalently bonded to a ring member. Furthermore, E bridges D and G and may additionally be bonded to M, whereas T is a radical comprising 1 to 50 non-hydrogen atoms. e is 0 or 1 and t is 0 or an integer sufficient to satisfy the valence of D. Z is a monovalent, divalent or trivalent anion different from X and Y. x is an integer of from 1 to 6 inclusive, y is an integer of from 1 to 3 inclusive and z is 0 or a positive integer, provided that x times the valence of X plus y times the valence of Y plus z times the valence of Z equals the valence of M.
The present invention also provides a catalyst system which includes the catalyst compound, for polymerization processes utilizing the catalyst system, and for polymers produced therefrom.
DETAILED DESCRIPTION OF THE INVENTION
For the purposes of this patent specification, the term “catalyst” refers to a metal compound, that when combined with an activator, polymerizes olefins. The term “activator” is used interchangeably with the term “co-catalyst”, and the term “catalyst system” refers to the combination of a catalyst, an activator, and optionally a support material.
In one embodiment, the new catalyst compounds of the present invention may be represented by Formula I:
MX
x
Y
y
Z
z
Formula I
In Formula I, M is a metal selected from Groups 3 to 12 and the lanthanide and actinide series of the Periodic Table of Elements. In one embodiment, M is selected from Groups 3 to 10 and the lanthanides. Illustrative, non-limiting examples of M are Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ni, Co, Fe, Pd, Ce, Y and Sm. Preferably, M is selected from Groups 4, 5, 6 and the lanthanides, in particular from Groups 4 and 5. Preferably, M is a Group 4 element, preferably zirconium or hafnium, and most preferably M is zirconium.
In Formula I, X represents a anionic moiety having the formula AR
4
where at least one of the radical groups, R, bridge A and M and where A is selected from Group 13 elements such as, e.g., B, Al and Ga. Preferably, A represents B or Al, and most preferably B. The radicals R, may be the same or different from each other, and are independently be hydrogen or a C
1-20
hydrocarbyl radical. Preferably, each R is independently hydrogen, an alkyl group, for example methyl or ethyl, or an aryl group, for example phenyl. More preferably at least one, and even more preferably at least two of the radicals R are hydrogen. Most preferably three or four of the radicals R are hydrogen.
Moreover, in compounds of Formula I the two radicals R and A together may form a ring having 3 to 10 ring members, preferably 4 to 8 members. While for values of x of 2 and higher the radicals X in Formula I may be identical or different, they are preferably identical.
In a preferred embodiment, AR
4
, represented by each X in Formula I, is independently tetrahydroborate or tetrahydroaluminate. Most preferably each radical X is tetrahydroborate.
In Formula I, Y is an at least bidentate anionic group represented by Formula II:
(T)t-D—(E)e-G Formula II
Where D is bonded to M of Formula I, and is selected from elements of Groups 13 to 16 of the Periodic Table of Elements. Illustrative, non-limiting examples of atoms D are B, C, Si, N, P, O and S. Preferably D is selected from N and P. Most preferably, D is nitrogen.
In Formula II, G is a mono- or polycyclic (e.g., bicyclic or tricyclic) radical, containing a heteroatom Q. G is bonded to M through the heteroatom Q which is either a ring member or is covalently bonded to a ring member. G contains at least 3, preferably at least 5, and most preferred at least 6 ring members. The maximum number of ring members of G is about 30, more preferred about 20, and most preferred about 10. Preferably G is not more than bicyclic, and most preferred it is monocyclic. If the ring system is polycyclic, it preferably comprises fused rings. In another embodiment, G is an aromatic ring system or fused ring system or at least comprises an aromatic ring. G may contain additional heteroatoms as ring members and/or covalently bonded to the ring other than Q. Preferably Q is a ring member and is N, O, P or S, more preferably N or P and most preferably N. In one embodiment, at least one of D and Q is N. In a particularly preferred embodiment D and Q are both nitrogen atoms. If Q is bonded to a ring member, this ring member usually is a carbon atom. Illustrative, non-limiting examples of G
Q
are pyridyl, pyrazyl and quinolyl, with pyridyl being particularly preferred.
In addition to optionally comprising more than one heteroatom as a ring member or covalently bonded to a ring member, G may also carry one or more (e.g., 2, 3, 4 etc.) substituents in any position of
Faulkner Kevin M.
Harlan Robert
Jones Lisa Kimes
Univation Technologies LLC
LandOfFree
Catalyst precursor and olefin polymerization processes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catalyst precursor and olefin polymerization processes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst precursor and olefin polymerization processes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3151126