Catalyst ligands, catalytic metal complexes and processes...

Organic compounds -- part of the class 532-570 series – Organic compounds – Heavy metal containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C556S007000, C556S008000, C556S012000, C556S021000, C556S042000, C556S045000, C556S051000, C556S054000, C549S206000, C546S002000, C534S015000

Reexamination Certificate

active

06534664

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to new organic compounds (e.g., ligands), their metal complexes and compositions using those compounds; the invention also relates to the field of catalysis. In particular, this invention relates to new compounds which when combined with suitable metals or metal precursor compounds provide useful catalysts for various bond-forming reactions, including polymerization, oligomerization or small molecule catalysis. This invention also relates to a method of making the ligands of this invention where the synthesis involves an aryl amination reaction. The invention also relates to combinatorial chemistry in that combinatorial techniques were used in connection with creating the ligands and testing compositions containing the ligands.
BACKGROUND OF THE INVENTION
Ancillary (or spectator) ligand-metal coordination complexes (e.g., organometallic complexes) and compositions are useful as catalysts, additives, stoichiometric reagents, monomers, solid state precursors, therapeutic reagents and drugs. Ancillary ligand-metal coordination complexes of this type can be prepared by combining an ancillary ligand with a suitable metal compound or metal precursor in a suitable solvent at a suitable temperature. The ancillary ligand contains functional groups that bind to the metal center(s), remain associated with the metal center(s), and therefore provide an opportunity to modify the steric, electronic and chemical properties of the active metal center(s) of the complex.
Certain known ancillary ligand-metal complexes and compositions are catalysts for reactions such as oxidation, reduction, hydrogenation, hydrosilylation, hydrocyanation, hydroformylation, polymerization, carbonylation, isomerization, metathesis, carbon-hydrogen activation, carbon-halogen activation, cross-coupling, Friedel-Crafts acylation and alkylation, hydration, dimerization, trimerization, oligomerization, Diels-Alder reactions and other transformations.
One example of the use of these types of ancillary ligand-metal complexes and compositions is in the field of single site polymerization or oligomerization catalysis. In connection with single site catalysis, the ancillary ligand offers opportunities to modify the electronic and/or steric environment surrounding an active metal center. This allows the ancillary ligand to create possibly different polymers or oligomers. It also allows for higher reactivity under changing process conditions.
Moreover, it is always a desire to discover new ancillary ligands, which upon coordination to a metal center or addition of a metal compound or precursor will catalyze or assist in catalysis of reactions differently from known ligand systems. This invention provides new ancillary ligands that may be used for coordination to a metal center or included in a composition with a metal or metal precursor compound. Upon coordination to the metal center or inclusion in the composition, such ligands influence the electronic and steric environment of the resulting coordination complex and may catalyze reactions differently, including more efficiently and selectively than known systems.
SUMMARY OF THE INVENTION
In one aspect, the invention disclosed herein is a new ligand, which can be characterized by the general formula:
wherein each R
1
, R
2
and R
3
is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, thio, seleno, and combinations thereof; optionally, R
1
and R
2
are joined together in a ring structure;
Q
1
and Q
2
are, independently, selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, thio, seleno, and combinations thereof; optionally, Q
1
and Q
2
are joined together in a ring structure;
X is selected from the group consisting of O, P, S, and N atoms; and a is 1 or 2, depending on X and its oxidation state.
The ligands can be included in a composition including a suitable metal or metal precursor compound, where the composition has catalytic properties. Also, the ligands can be coordinated with a metal precursor to form metal-ligand complexes, which may be catalysts. The metal-ligand complexes of this invention may be characterized by one of the following the general formulas:
wherein R
1
, R
2
, R
3
, Q
1
, Q
2
, and X are as defined above. In addition, M is a transition metal selected from the group consisting of Se, Y and Groups 4-12 of the Periodic Table of Elements; L is independently each occurrence, a neutral and/or charged ligand; and n is a number 0, 1, 2, 3, 4, or 5, depending on M. If X is nitrogen, a is either 1 or 2 depending on the type of bonding to the metal M. In these formulas, if X is oxygen, then a is either 0 or 1, depending on the type of bonding to the metal M. If X is phosphorus, a is either 1 or 2 depending on the type of bonding to the metal M and the oxidation state of the phosphorus. Similarly, if X is sulfur, a is 0 or 1 depending on the type of bonding to the metal M and the oxidation state of the sulfur.
These transition metal-ligand complexes or compositions catalyze reactions involving activation of and/or formation of H—Si, H—H, H—N, H—O, H—P, H—S, C—H, C—C, C═C, C≡C, C—halogen, C—N, C—O, C—S, C—P, and C—Si bonds. Specifically, such reactions include carbonylation, hydroformylation, hydroxycarbonylation, hydrocarbonylation, hydroesterification, hydrogenation, transfer hydrogenation, hydrosilylation, hydroboration, hydroamination, epoxidation, aziridination, reductive amination, C—H activation, insertion, C—H activation-insertion, C—H activation-substitution, C-halogen activation, C-halogen activation-substitution, C-halogen activation-insertion, cyclopropanation, alkene metathesis, alkyne metathesis, polymerization, alkene oligomerization, alkene polymerization, alkyne oligomerization, alkyne polymerization, co-polymerization, CO-alkene co-oligomerization, CO-alkene co-polymerization, CO-alkyne co-oligomerization and CO-alkyne co-polymerization.
Further aspects of this invention will be evident to those of skill in the art upon review of this specification.
DETAILED DESCRIPTION OF THE INVENTION
The invention disclosed herein is a new ligand that may be combined with metals or metal precursor compounds to form coordination complexes or compositions of matter, which are useful as catalysts for chemical reactions.
As used herein, the phrase “characterized by the formula” is not intended to be limiting and is used in the same way that “comprising” is commonly used. The term “independently selected” is used herein to indicate that the R groups, e.g., R
1
, R
2
, R
3
, R
4
, and R
5
can be identical or different (e.g. R
1
, R
2
, R
3
, R
4
, and R
5
may all be substituted alkyls or R
1
and R
2
may be a substituted alkyl and R
3
may be an aryl, etc.). A named R group will generally have the structure that is recognized in the art as corresponding to R groups having that name. For the purposes of illustration, representative R groups as enumerated above are defined herein. These definitions are intended to supplement and illustrate, not preclude, the definitions known to those of skill in the art.
The term “alkyl” is used herein to refer to a branched or unbranched, saturated or unsaturated acyclic hydrocarbon radical. Suitable alkyl radicals include, for example, methyl, ethyl, n-propyl, i-propyl, 2-propenyl (or allyl), vinyl, n-butyl, t-butyl, i-butyl (or 2-methylpropyl), etc. In particular embodiments, alkyls have between 1 and 200 carbon atoms, between 1 and 50 carbon atoms or between 1 and 20 carbon atoms.
“Substituted alkyl” refers to an alkyl as just described in which one or more hydrogen atom to any carbon of the alkyl is replaced

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalyst ligands, catalytic metal complexes and processes... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalyst ligands, catalytic metal complexes and processes..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst ligands, catalytic metal complexes and processes... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3010994

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.