Catalyst – solid sorbent – or support therefor: product or process – Zeolite or clay – including gallium analogs – And additional al or si containing component
Reexamination Certificate
1998-06-12
2003-01-28
Silverman, Stanley S. (Department: 1754)
Catalyst, solid sorbent, or support therefor: product or process
Zeolite or clay, including gallium analogs
And additional al or si containing component
C502S068000, C502S071000, C502S077000, C502S079000
Reexamination Certificate
active
06511933
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the priority of Japanese Patent Application No. HEI 09-173081 filed Jun. 13, 1997, which is incorporated herein by reference.
FIELD OF THE INVENTION
This invention relates to an additive to a fluidized catalytic cracking catalyst for heavy oil.
BACKGROUND OF THE INVENTION
A variety of methods are known for obtaining light oil by cracking heavy oil, such as fluidized catalytic cracking (FCC). A great deal of research has been conducted to achieve high yields of the desirable light oil products. It is known to add and mix a catalyst, which acts to promote cracking of heavy components in heavy oil, with a cracking catalyst to improve the yield of light oil.
As such additive catalysts, those composed of alumina, clay and silica have been known to date. However, these additive catalysts are typically accompanied by a problems, such as the cracking of heavy oil not being promoted or the formation of undesirable amounts of coke.
An object of the present invention is to provide an additive catalyst for the cracking of heavy oil, which has relatively high cracking activity for heavy components in the heavy oil with reduced coke deposition.
With a view to attaining the above-described object, the present inventors have proceeded with extensive research, leading to the completion of the present invention.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is thus provided an additive catalyst for the catalytic cracking of heavy oil, characterized in that the additive catalyst comprises a large pore zeolite, a mixed metal oxide, clay and a metal oxide, and the total acidity of a portion of said catalyst, said portion being composed of said catalyst components other than said zeolite, is from 0.02 to 0.08 mmol/g.
DETAILED DESCRIPTION OF THE INVENTION
Specific examples of the mixed metal oxides employed as a catalyst additive component in the present invention can include silica-alumina and silica-zirconia as preferred examples and also silica-containing mixed metal oxides, such as silica-magnesia, silica- titania and silica-boria. In the case of silica-alumina, it is preferred to use one having a silica content in a range of from about 5 to 30 wt. %, preferably from about 10 to 20 wt. %. A silica content higher than this range results in a catalyst having relatively poor hydrothermal stability, while a silica content lower than the above range leads to a catalyst having relatively low cracking activity for heavy components. Silica-aluminas suitable for use in the present invention have, as expressed in terms of physical properties in their calcined form, a specific surface area ranging from about 250 to 450 m
2
/g, preferably from about 300 to 400 m
2
/g, a pore volume from about 0.5 to 1.5 cc/g, preferably from about 0.7 to 1.2 cc/g. It is also preferred to use a silica-alumina having a structure wherein silica is bonded in the form of a layer on a surface of alumina as a core. In the case of silica-zirconia, it is preferred to use one having a silica content in a range of from 5 to 30 wt. %, preferably from 10 to 20 wt. %. A silica content higher than this range results in a catalyst equipped with poorer hydrothermal stability, while a silica content lower than the above range leads to a catalyst having lower cracking activity for heavy components. Silica-zirconias suitable for use in the present invention have, as expressed in terms of physical properties in its calcined form, a specific surface area ranging from about 100 to 400 m
2
/g, preferably from about 120 to 350 m
2
/g, a pore volume from about 0.1 to 1.0 cc/g, preferably from about 0.2 to 0.8 cc/g. As silicazirconia, it is also preferred to use one having a structure wherein silica is bonded in the form of a layer on a surface of zirconia as a core. Illustrative of the mixed metal oxide are alumina-magnesia, alumina-calcia and alumina-boria in addition to the above described silica-containing mixed metal oxides. In the case of alumina-boria, the content of alumina may be from about 5 to 95 wt. %, preferably from about 10 to 90 wt. %. It is preferred to use one having a structure wherein boria is bonded in the form of a layer on a surface of alumina as a core.
The mixed metal oxides employed in the present invention generally have a specific surface area from about 250 to 450 m
2
/g, with 300 to 400 m
2
/g being preferred, and an overall pore volume of from about 0.5 to 1.5 cc/g, with 0.7 to 1.2 cc/g being preferred. One having relatively large pores in a large proportion in its pore volume distribution is preferred. In the present invention, the pore volume A of pores having diameters from 60 to 200 Å may account for at least 65%, preferably about 75 to 85% of the overall pore volume T, and the pore volume B of pores having diameters of from 100 to 200 A may preferably account for at least 30% of the overall pore volume T. The ratio B/A of the pore volume B to the pore volume A may preferably be at least 0.4, notably 0.45 or greater.
In the mixed metal oxide employed in the present invention, its pore characteristics such as specific surface area and pore volume can be controlled according to conditions for the production of the mixed metal oxide.
The catalyst according to the present invention can be obtained by conventional methods. For example, the catalyst can be obtained by evenly mixing the zeolite, the mixed metal oxide, the metal oxide, and the clay in an aqueous medium and then spray drying the resultant slurry.
Usable examples of the zeolite can include a variety of conventionally known crystalline silicates, for example, crystalline aluminosilicate and aluminometallosilicates containing a metal in their skeleton structures (e.g., crystalline aluminogallosilicate and the like). Particularly preferred are synthetic Y-type zeolite ultrastable Y-type zeolite, ZSM-5 and &bgr;-mordenite, all of which are common in crystalline structure with faujasite. It is also preferable to use one containing hydrogen and/or a rare earth metal as cations.
Illustrative of the metal oxide can be silica, alumina, magnesia, zirconia, and titania. Of these, use of silica is preferred.
Examples of the clay can include kaolin, bentonite and kibushi clay. Of these, use of kaolin is preferred. In general, one containing as a primary component one or more of clay minerals such as kaolinite, dickite, nacrite, halloysite and hydrated halloysite is used.
In the catalyst of the present invention, the content of the zeolite can be generally from about 1 to 40 wt. %, preferably from about 10 to 30 wt. %; the content of the mixed metal oxide can be generally from about 5 to 80 wt. %, preferably from about 10 to 60 wt. %; the content of the metal oxide can be generally from about 10 to 40 wt. %, preferably from about 15 to 35 wt. %; and the content of the clay can be generally from about 10 to 80 wt. %, preferably from about 20 to 70 wt. %.
In the portion (i.e., matrix portion) of the catalyst according to the present invention, said portion being composed of said catalyst components other than said zeolite, that is, in the portion composed of a mixture of the mixed metal oxide the metal oxide and the clay, the specific surface area can be from about 35 to 65 m
2
/g, preferably from about 40 to 60 m
2
/g, and the overall pore volume can be from about 0.14 to 0.45 ml/g preferably from about 0.20 to 0.40 ml/g. Further, its pore distribution may preferably be biased toward relatively large pores. The pore volume A of pores having diameters of from about 60 to 200 Å may account for at least 45%, preferably 50% or more of the overall pore volume T, and the pore volume B of pores having diameters of from about 100 to 200 A may account for at least 20%, preferably 25% or more of the overall pore volume T. The ratio B/A of the pore volume B to the pore volume A may be at least 0.4, preferably 0.5 or greater.
The pore characteristics of the portion of the catalyst according to the present invention, said portion being formed of the components other than the zeolite,
Ootake Nobuo
Shibasaki Masato
Nguyen Cam N.
Silverman Stanley S.
Singleton Wilson Erika
Tonen Corporation
LandOfFree
Catalyst for cracking heavy oil does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catalyst for cracking heavy oil, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst for cracking heavy oil will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3008592