Catalyst equipped vapor-communicating multi-cell valve...

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S176000

Reexamination Certificate

active

06524747

ABSTRACT:

DESCRIPTION OF THE PRIOR ART
Lead-acid batteries are known and have achieved wide acceptance in a variety of fields.
Valve-regulated lead-acid batteries, particularly so-called absorbent glass mat or “AGM” valve-regulated lead-acid batteries have achieved significant acceptance in recent years as sources of standby electrical power. These absorbent glass mat valve-regulated lead-acid batteries have become widely used to provide standby power for telecommunications applications, typically for cellular telephone towers, other telecommunications equipment and computers. In such applications, the absorbent glass mat valve-regulated lead-acid batteries are maintained on a standby basis; power is drawn from these absorbent glass mat valve-regulated lead-acid batteries only when the primary source of power to the cellular telephone towers, other telecommunications equipment or computer is interrupted, such as during a failure of a public utility power grid. In such instance, the absorbent glass mat valve-regulated lead-acid batteries, which may have been on standby for a number of years, supply power until the primary source of power, typically the public utility grid, has returned to service.
Gas recombination catalysts have been used in flooded lead-acid batteries as well as in other battery systems. These catalysts have been positioned externally to the battery cells contacting the open atmosphere. The catalysts recombine oxygen and hydrogen gas on their surfaces, converting the gas back into water vapor which condenses and flows back into the battery. Such catalysts have found limited application in standby batteries and have not been used heretofore for valve-regulated lead-acid batteries due to the need for compact, space efficient installation which is inconsistent with having an external catalyst unit.
Valve-regulated lead-acid batteries designed for standby service typically are electrolyte-limited, having the entire electrolyte absorbed in microfibrous glass mat material serving as the separator between the positive and negative plates. Any water loss from the battery reduces total water volume available and increases concentration and specific gravity of the sulfuric acid electrolyte. Loss of liquid volume can lead to partial loss of contact between the absorbent glass mat separator and the active plates within the battery, resulting in premature performance degradation.
It has been found that absorbent glass mat valve-regulated lead-acid batteries in standby, back-up power service, tend to lose capacity over time, even if a small trickle charge of current is applied automatically to the battery. It has also been found that catalysts, notably palladium, when positioned in intimate contact with vapor phase electrolyte in an absorbent glass mat valve-regulated lead-acid battery, tend to stem such capacity losses by enhancing the reaction by which hydrogen and oxygen recombine into water within the cell; it is this recombination reaction which gives such cells their “recombinant” name. Reduction in loss of capacity and consequent greater confidence in the ability of such cells to provide standby power over a long term, such as for twenty years, has been attributed to the catalyst recombination of hydrogen and oxygen into water and thereby reducing loss of hydrogen and oxygen gas with the attendant loss of potential for generation of water from the cell.
SUMMARY OF THE INVENTION
This invention is based on the surprising and unexpected discovery that multiple cells in a standby service valve regulated recombinant lead-acid battery placed in vapor communication one with another may be served by a number of catalyst units fewer than the number of cells with excellent performance. Such batteries exhibit substantially better gassing rates than conventional non-catalyst equipped batteries with conventional (non-vapor communicating) cells and have significant manufacturing advantages.
The catalyst units are desirably associated with vent valve housings, positioned just below the pressure relief vent. As a result, gas trying to escape from head space via which multiple cells vapor communicate one with another is in proximity with the catalyst unit.
Surprisingly, in such batteries even in standby service, there is sufficient mass transfer among vapor-communicating cells that oxygen and hydrogen gas produced by the electrolytic reaction recombine under the effect of the catalyst even though the catalyst is not in immediate proximity with some of the vapor-communicating cells. When batteries embodying the invention are on float, there is a considerable decrease in gas escaping when a catalyst is provided in a common head space, reducing and in some cases effectively eliminating water loss. Additionally, decreases in float current have been observed in batteries embodying the invention vis-a-vis comparable non-catalyst equipped commercially available batteries. Moreover, there is an improvement in retention of electrical performance in batteries embodying the invention vis-a-vis comparable commercially available batteries without the catalyst. Water vapor produced through the electrolytic reaction apparently does not concentrate in the vicinity of the catalyst but distributes itself throughout common head space shared by multiple vapor-communicating cells.
In one of its aspects this invention provides a recombinant lead-acid battery including a case, a plurality of lead-acid cells within the case, where each cell includes a plurality of positive and negative lead metal plates, and absorbent separator material between at least some of the positive and negative plates. In this aspect of the invention, the case preferably includes partitions for separating adjacent cells one from another with portions of the partitions being spaced from the proximate portion of the case to define space for mass transfer vapor migration and partial pressure equalization among the cells within the case. At least one catalyst unit is preferably connected to the case and communicates with the mass transfer vapor migration and partial pressure equalization space to enhance recombination of hydrogen and oxygen into water within the battery.
The catalyst unit is preferably constructed together with a vent valve for the battery so as to be removable from the battery unitarily with the vent valve for ease of maintenance and manufacture. The catalyst material preferably sits in a cage connected to a lower portion of the vent valve so that upon insertion of the vent valve into the battery case, the catalyst material enters the vapor communication space via which mass transfer vapor migration and partial pressure equalization occurs among a plurality of cells within the battery.
The catalyst unit is desirably at least partially within the battery case and is most preferably essentially if not totally within the battery case. The catalyst is preferably palladium or a palladium alloy, most preferably 0.5 percent (0.5%) palladium deposited on alumina or carbon. Other suitable catalysts include platinum, ruthenium, rhodium, other metals of the platinum group, precious metals, other noble metals and compounds such as tungsten carbide. While the preferred loading of the catalyst on the substrate is 0.5 percent (0.5%), 0.8 percent (0.8%) also works well and loadings of one percent (1%) or less are the preferred range. However, catalyst loadings may be as high as ten percent (10%) by weight of the substrate.
In another of its aspects, this invention provides a recombinant lead-acid battery which includes a case and a plurality of lead-acid cells within the case where each cell includes positive and negative lead metal plates and absorbent separator material between some of the positive and negative plates. Some or all of the cells within the case are in vapor mass transfer and partial pressure equalization communication one with another. A plurality of catalyst units are in vapor communication with the cells and enhance recombination of hydrogen and oxygen into water within the battery, with the plurality of catalyst units pre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalyst equipped vapor-communicating multi-cell valve... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalyst equipped vapor-communicating multi-cell valve..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst equipped vapor-communicating multi-cell valve... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3157189

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.