Organic compounds -- part of the class 532-570 series – Organic compounds – Heavy metal containing
Reexamination Certificate
1999-11-05
2002-07-16
Shaver, Paul F. (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Heavy metal containing
C526S126000, C556S012000
Reexamination Certificate
active
06420580
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to bridged metallocene catalysts comprising bulky ligand groups, and in particular, indenyl groups, bound to the transition metal and a vinyl group bound to the bridge. It has been found that the presence of the vinyl moiety on the bridging group dramatically improves the melt strength and reduces the melt index ratio (MIR) of the resulting polymer.
BACKGROUND OF THE INVENTION
EP 0 745 607 A2 discloses “double bound metallocenes” i.e. metallocenes having both a pi and sigma carbon bond to the transition metal.
EP 0 586 167 A1 discloses supported metallocene complexes having a polymerizable group, preferably containing at least three carbon atoms, on the cyclopentadienyl groups or the group bridging the Cp groups that allegedly produce a higher molecular weight polymer. The data in the examples relates to cyclopentadienyl rings having the unsaturated group. The molecular weight effect has not been observed for unsaturations on the bridging group, however.
U.S. Pat. No. 5,565,592 discloses cyclopentadienyl compounds having bridged cyclopentadiene-type ligands having a bridge having a branch that has a terminal vinyl group, particularly a bis fluorenyl bridged metallocene where the Si bridge has a —CH═CH
2
group and an R″ group, where R″ is selected from the group consisting of hydrogen alkyl groups having 1 to 10 carbon atoms, and aryl groups having 6 to 10 carbon atoms. The examples relates to the slurry phase polymerization of ethylene with fluorenyl metallocenes rather than the gas phase polymerization of indenes.
Thus there is a need in the art to produce polymers having both good melt index ratios and good melt strength.
SUMMARY OF THE INVENTION
This invention relates to a catalyst system, a polymerization process using that catalyst system, polymer produced therefrom and products produced from such polymer.
In one aspect, the invention relates to catalyst compositions and systems including a bridged metallocene catalysts having bulky ligand groups, and in particular, indenyl groups, bound to the transition metal and a vinyl group bound to the bridge.
In another aspect, the invention relates to processes for polymerizing olefin(s) utilizing the above catalyst compositions and systems.
In another aspect, the invention relates to polymers prepared utilizing the above catalyst composition and systems.
DETAILED DESCRIPTION OF THE INVENTION
In a preferred embodiment an activator is combined with a transition metal compound represented by the formula:
wherein
Y is hydrogen or a hydrocarbyl group, preferably hydrogen or methyl, a halogen or heteroatom,
M is a group 4 metal, preferably zirconium or hafnium, preferably zirconium, and n is the oxidation state of the metal, preferably 3 or 4, preferably 4.
Each Q is, independently, an anionic leaving group, preferably a hydride, substituted or unsubstituted hydrocarbyl, halide, substituted or unsubstituted carboxylate, a substituted or unsubstituted heteroatom, substituted or unsubstituted alkoxide, substituted or unsubstituted aryloxide, substituted or unsubstituted amide, substituted or unsubstituted phosphide, or other types of bulky ligands including but not limited to bulky amides, phosphides, alkoxides, aryloxides, imides, carbolides, borollides, porphyrins, phthalocyanines, corrins and other polyazomacrocycles any two Q's can be bound together or form a ring, an alkylidene ligand, or a cyclometallated ligand or other divalent chealating ligand.
The bulky ligands, X and Z are independently open, acyclic or fused ring(s) or ring system(s) and are any ancillary ligand system. Non-limiting examples of bulky ligands include, cyclopentaphenanthreneyl ligands, indenyl ligands, benzindenyl ligands, octahydrofluorenyl ligands, cyclooctatetraendiyl ligands, cyclopentacyclododecene ligands, azenyl ligands, azulene ligands, pentalene ligands, phosphoyl ligands, phosphinimine (WO 99/40125), pyrrolyl ligands, pyrozolyl ligands, carbazolyl ligands, borabenzene ligands and the like, including hydrogenated versions thereof, for example tetrahydroindenyl ligands. In one embodiment, X and Z may be any other ligand structure capable of &eegr;-bonding to M, preferably &eegr;
3
-bonding to M and most preferably &eegr;
5
-bonding . In yet another embodiment, the atomic molecular weight (MW) of X or Z exceeds 60 a.m.u., preferably greater than 65 a.m.u.. In another embodiment, X and Z may comprise one or more heteroatoms, for example, nitrogen, silicon, boron, germanium, sulfur and phosphorous, in combination with carbon atoms to form an open, acyclic, or preferably a fused, ring or ring system, for example, a hetero-cyclopentadienyl ancillary ligand. Other X and Z bulky ligands include but are not limited to bulky amides, phosphides, alkoxides, aryloxides, imides, carbolides, borollides, porphyrins, phthalocyanines, corrins and other polyazomacrocycles. Independently, each X and Z may be the same or different type of bulky ligand that is bonded to M, provided however that X and Z may not be cyclopentadienyl or fluorenyl groups
Independently, each X and Z may be unsubstituted or substituted with a combination of substituent groups R. Non-limiting examples of substituent groups R include one or more from the group selected from hydrogen, or linear, branched alkyl radicals, or alkenyl radicals, alkynyl radicals, cycloalkyl radicals or aryl radicals, acyl radicals, aroyl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxycarbonyl radicals, aryloxycarbonyl radicals, carbomoyl radicals, alkyl- or dialkyl-carbamoyl radicals, acyloxy radicals, acylamino radicals, aroylamino radicals, straight, branched or cyclic, alkylene radicals, or combination thereof. In a preferred embodiment, substituent groups R have up to 50 non-hydrogen atoms, preferably from 1 to 30 carbon, that can also be substituted with halogens or heteroatoms or the like. Non-limiting examples of alkyl substituents R include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl or phenyl groups and the like, including all their isomers, for example tertiary butyl, isopropyl, and the like. Other hydrocarbyl radicals include fluoromethyl, fluroethyl, difluroethyl, iodopropyl, bromohexyl, chlorobenzyl and hydrocarbyl substituted organometalloid radicals including trimethylsilyl, trimethylgermyl, methyldiethylsilyl and the like; and halocarbyl-substituted organometalloid radicals including tris(trifluoromethyl)-silyl, methyl-bis(difluoromethyl)silyl, bromomethyldimethylgermyl and the like; and disubstitiuted boron radicals including dimethylboron for example; and disubstituted pnictogen radicals including dimethylamine, dimethylphosphine, diphenylamine, methylphenylphosphine, chalcogen radicals including methoxy, ethoxy, propoxy, phenoxy, methylsulfide and ethylsulfide. Non-hydrogen substituents R include the atoms carbon, silicon, boron, aluminum, nitrogen, phosphorous, oxygen, tin, sulfur, germanium and the like, including olefins such as but not limited to olefinically unsaturated substituents including vinyl-terminated ligands, for example but-3-enyl, prop-2-enyl, hex-5-enyl and the like. Also, at least two R groups, preferably two adjacent R groups, are joined to form a ring structure having from 3 to 30 atoms selected from carbon, nitrogen, oxygen, phosphorous, silicon, germanium, aluminum, boron or a combination thereof. Also, a substituent group R group such as 1-butanyl may form a carbon sigma bond to the metal M.
Preferably, X and Z are independently a substituted or unsubstituted indenyl group. The indenyl group may be completely or partially substituted with one or more C
1
to C
100
linear, branched or cyclic aryl, alkyl, alkenyl or alkynyl groups or heteroatom containing groups. Preferred substituents for the indenyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl or phenyl groups and the like, including all their isomers, for example tertiary butyl, iso propyl etc. Non-hydrogen substituents include the at
Holtcamp Matthew W.
Lue Ching-Tai
Shaver Paul F.
Sher Jaimes
Univation Technologies LLC
LandOfFree
Catalyst compositions and method of polymerization therewith does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catalyst compositions and method of polymerization therewith, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst compositions and method of polymerization therewith will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2838346