Catalyst composition for purifying exhaust gas

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Metal – metal oxide or metal hydroxide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S302000

Reexamination Certificate

active

06492297

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a composite of cerium, zirconium and samarium components and to a catalyst composition containing such composite as well as the use of such catalyst composition for the treatment of a gas stream to reduce contaminants contained therein. More specifically, the present invention is concerned with catalyst compositions containing such composite of the type generally referred to as three-way conversion or “TWC” and a process of substantially simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides present in gas streams, particularly exhaust gas streams produced by internal combustion engines.
2. Discussion of Related Art
Three-way conversion catalysts (TWC) have utility in a number of fields including the treatment of exhaust gas streams from internal combustion engines, such as automobile, truck and other gasoline-fueled engines. Emission standards for unburned hydrocarbons, carbon monoxide and nitrogen oxide contaminants have been set by various governments and must be met by older as well as new vehicles. In order to meet such standards, catalytic converters containing a TWC catalyst are located in the exhaust gas line of internal combustion engines. Such catalysts promote the oxidation by oxygen in the exhaust gas stream of unburned hydrocarbons and carbon monoxide as well as the reduction of nitrogen oxides to nitrogen.
It is well know that by the time engine exhaust gases travel from the outlet of the exhaust manifold through an exhaust pipe to a catalytic converter, the gases cool significantly relative to the temperature at or near the manifold, so that there is a significant period of a low rate of conversion of the pollutants in the exhaust gas stream before the exhaust gases heat the catalyst in the catalytic converter to its light-off temperature. Accordingly, during the cold start period of engine operation, there is a significant discharge of engine exhaust gas containing a relatively high amount of pollutants.
It is also well known in the art to reduce the level of pollutants in the exhaust gas stream, particularly the level of hydrocarbons and carbon monoxide, by using an air pump in conjunction with the engine to help oxidize such pollutants. However, vehicle manufacturers would prefer to avoid using mechanical pollution control devices such as air pumps which, with their associated plumbing and mechanical parts, affect the engine architecture and are difficult to control without having an adverse impact on the optimum performance of the engine. Accordingly, vehicle manufacturers would prefer, if at all possible, to tune the engine for optimum performance without using mechanical types of a pollution control device and instead meet the vehicle emission standards discussed below solely with the use of catalyst members. As discussed below, increasingly stringent governmental emission standards require, however, that cold-start emissions be reduced.
The current “LEVY” (low emission vehicle) standards in effect for all states other than California prohibit vehicle emissions above 0.08 gram of non-methane hydrocarbons per mile, 3.4 grams of carbon monoxide per mile and 0.2 gram of NO
x
(nitrogen oxides) per mile. Many vehicle manufacturers have difficulty in meeting the current standards solely with the use of available upstream and/or downstream catalyst compositions without the concurrent use of additional mechanical devices such as air pumps. Of even greater concern is the fact that the California Air Resource Board (“CARB”)has promulgated new “ULEV” (ultra-low emission vehicle) standards that will prohibit vehicle emissions above 0.04 gram of non-methane hydrocarbons per mile, 1.7 grams of carbon monoxide per mile and 0.2 gram of NO
x
per mile. Moreover, based on historical trends in vehicle emission standards, it is likely that the new ULEV standards will be required nationwide within a few years. Unless an effective method of meeting the new ULEV standards can be rapidly developed and implemented, vehicle manufacturers face the difficult problem of achieving such standards without significant changes in engine/exhaust architecture, incorporation of additional mechanical pollution control devices and the use of large amounts of expensive precious metal-based catalyst systems.
For most vehicles, a large portion (i.e., up to about 80%)of the hydrocarbon emissions occurs during the first phase of the U.S. Federal Test Procedure (“FTP”), which encompasses the cold-start period of engine operation, and which requires simulation of cold-start, warm-up, acceleration, cruise, deceleration and similar engine operating modes over a specified time period. A variety of technologies are under development to reduce cold start hydrocarbon emissions, including close-coupled catalysts as disclosed in Ball, D. J., “Distribution of warm-up and Underfloor Catalyst Volumes,” SAE 922338, 1992; electrically heated catalysts as disclosed in Piotrowski, G. K., “Evaluation of a Resistively Heated Metal Monolith Catalytic Converter on a Gasoline-Fueled Vehicle, EPA/AA/CTAAB/88-12,1988 and Hurley, R. G., “Evaluation of Metallic and Electrically Heated Metallic Catalysts on a Gasoline Fueled Vehicle,” SAE 900504, 1990; hydrocarbon absorbers as disclosed in Heimrich, M. J., Smith, L. R., and Kitowski, J., “Cold Start Hydrocarbon Collection for Advanced Exhaust Emission Control,” SAE 920847, 1992 and Hochmuth, J. K., Burk, P. L., Telentino, C., and Mignano, M. J., “Hydrocarbon Traps for Controlling Cold Start Emissions,” SAE 930739, 1993; bypass catalysts as disclosed in Fraidl, G. K., Quissrk, F. and Winklhofer, E., “Improvement of LEV/ULEV Potential of Fuel Efficient High Performance Engines,” SAE 920416, 1992; and burners as disclosed in Ma, T., Collings, N. and Hands, T., “Exhaust Gas Ignition (EGI)—A New Concept for Rapid Light-off of Automotive Exhaust Catalyst,” SAE 920400, 1992. It has been reported that close-coupled catalysts, especially Pd-containing catalysts, are very effective at reducing hydrocarbon emissions during a cold start of the FTP cycle as disclosed in Ball, D. J., “Distribution of warm-up and Underfloor Catalyst Volumes,” SAE 922338, 1992; Summers, J. C., Skowron, J. F., and Miller, M. J., “Use of Light-Off Catalysts to Meet the California LEV/ULEV Standards,” SAE 930386, 1993; and Ball, D. J., “A Warm-up and Underfloor Converter Parametric Study,” SAE 932765, 1993. Recently, Ford has reported a successful application of Pd-only catalyst for meeting stringent emission standards as disclosed in Dettling, J., Hu, Z, Lui, Y., Smaling, R., Wan, C and Punke, A., “SMART Pd TWC Technology to Meet Stringent Standards,” Presented at CAPoC
3
Third International Congress on Catalyst and Automobile Pollution Control, Apr. 20-22, 1994, Brussels.
A typical motor vehicle catalyst is an underfloor TWC catalyst which catalyzes the oxidation by oxygen in the exhaust gas of the unburned hydrocarbons and carbon monoxide and the reduction of nitrogen oxides to nitrogen. TWC catalysts which exhibit good activity and long life comprise one or more precious metal components, e.g., platinum group metal components such as platinum, palladium, rhodium, ruthenium and iridium located upon a high surface area, refractory oxide support, e.g., a high surface area alumina coating. The support is carried on a suitable carrier or substrate such as a monolithic carrier comprising a refractory ceramic or metal honeycomb structure, or refractory particles such as spheres or short, extruded segments of a suitable refractory material.
U.S. Pat. No. 4,134,860 relates to the manufacture of catalyst structures. The catalyst composition can contain platinum group metals, base metals, rare earth metals and refractory, such as alumina support. The composition can be deposited on a relatively inert carrier such as a honeycomb.
The high surface area alumina support materials, also referred to as “gamma alumina” or “activated alumina,” typically exhibit a BET surface area

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalyst composition for purifying exhaust gas does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalyst composition for purifying exhaust gas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst composition for purifying exhaust gas will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2989446

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.