Catalyst based on cobalt and/or rhodium employed in a...

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Organic compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S166000, C252S182300, C546S002000, C546S010000, C548S101000, C548S108000, C548S402000, C556S137000, C556S138000, C556S141000, C568S451000, C568S454000, C568S455000

Reexamination Certificate

active

06677268

ABSTRACT:

The present invention relates to an improved catalyst based on cobalt and/or rhodium used in a two-phase medium. The catalyst based on cobalt and/or rhodium, which comprises at least one cobalt and/or rhodium complex co-ordinated with at least one nitrogen-containing ligand, is dissolved in a non-aqueous ionic solvent which is liquid at a temperature of less than 90° C., in which the aldehydes formed are slightly soluble or insoluble. The catalyst is particularly useful for the hydroformylation of olefinically unsaturated compounds.
Hydroformylation of olefinic compounds is a reaction of major industrial importance and the majority of processes use homogeneous catalysts dissolved in an organic phase constituted by the reactants, products and possibly excess ligand, although difficulties are encountered in separating and recovering the catalyst, in particular when it is used in relatively large quantities, as is the case with catalysts based on cobalt or on a noble metal, as is the case with rhodium-based catalysts.
DESCRIPTION OF RELATED ART
One solution aimed at solving that problem has been developed by Bartik et al., Organometallics (1993), 12, 164-170, J. Organometal. Chem. (1994), 480, 15-21, and by Beller et al., J. molecular Catal. A: Chemical (1999), 143, 31-39. It consists of carrying out hydroformylation in the presence of an aqueous solution containing a cobalt complex which is rendered water-soluble by the presence of a phosphine-sulfonate ligand such as the sodium salt of trisulfonated triphenylphosphine or a trisulfonated tris-(alkylphenyl)phosphine. International Patent Application WO 97/00132 describes cobalt clusters substituted by trialkoxysilylmethyl groups which render them water-soluble. In that manner, the organic phase containing the aldehydes is readily separated from the aqueous phase containing the catalyst.
A further solution aimed at solving that problem has been described in French Patent No. 2 314 910. It consists of carrying out hydroformylation in the presence of an aqueous solution containing a rhodium complex which is rendered water-soluble by the presence of a sulfonated phosphine ligand which is itself water-soluble, such as the sodium salt of trisulfonated triphenylphosphine. In that manner, the organic phase containing the aldehydes is readily separated from the aqueous phase containing the catalyst. That technique has been studied widely and those studies have been discussed in an article by W. A. Herrmann in “Angewandte Chemie International”, 1993, volume 32, pages 1524 ff.
Despite the huge industrial importance of such techniques for hydroformylation of propylene, such two-phase systems suffer from a lack of solubility of olefins in water, leading to relatively low reaction rates, which render them unsuitable for long chain olefins.
U.S. Pat. No. 3,565,823 describes a technique consisting of dispersing a transition metal compound in a quaternary ammonium or phosphonium salt of tin or germanium with formula (R
1
R
2
R
3
R
4
Z)YX
3
where R
1
, R
2
, R
3
, and R
4
are hydrocarbyl residues containing up to 18 carbon atoms, Z is nitrogen or phosphorous, Y is tin or germanium and X is a halogen, for example chlorine or bromine.
U.S. Pat. No. 3,832,391 claims a process for olefin carbonylation using the same composition. The above compositions have the disadvantage of having a relatively high melting point, for example over 90° C., which complicates manipulation of the catalyst solutions and the reaction products.
U.S. Pat. No. 5,874,638 describes that it is possible to benefit both from the advantages of a two-phase operation while avoiding the disadvantages linked to using water and to
using compounds with a high melting point, by dissolving certain catalytic compounds of transition metals from groups 8, 9 and 10, known to catalyze hydroformylation, in non-aqueous ionic solvents which are constituted by organic-inorganic salts which are liquid at ambient temperature.
SUMMARY OF THE INVENTION
It has now been discovered that the activity and selectivity for the hydroformylation reaction of catalysts based on cobalt and/or rhodium used in an ionic non-aqueous solvent which is liquid at a temperature of less than 90° C. are greatly improved by using nitrogen-containing ligand to complex the cobalt and/or rhodium. The present invention focuses on the novel catalyst system.
More precisely, the invention provides a catalyst composition comprising at least
one complex of cobalt and/or rhodium co-ordinated by at least one nitrogen-containing ligand, and of at least one non-aqueous ionic solvent comprising at least one organic-inorganic salt with general formula Q
+
A

, where Q
+
represents a quaternary ammonium and/or quaternary phosphonium cation and A

represents an anion, with the provision that the at least one ligand is devoid of tertiary phosphines, stibnines, arsines and phosphates.
The cobalt and/or rhodium precursor compounds of the catalyst are selected from the group formed by cobalt and/or rhodium salts such as acetylacetonates, carboxylates, in particular formate or acetate, and carbonyl complexes, such as dicobalt-octacarbonyl, cobalt-tetracarbonyl hydride, rhodium-dicarbonyl acetylacetonate and carbonyl clusters. The choice of the cobalt and/or rhodium precursor compound is not critical, but in general it is preferable to avoid halides.
The nitrogen-containing ligand is preferably selected from the group formed by monoamines, di-, tri- and polyamines, imines, diimines, pyridine and substituted pyridines, bipyridine, imidazole and substituted imidazoles, pyrrole and substituted pyrroles, pyrazole and substituted pyrazoles. Non limiting examples which can be cited are triethylamine, ethylene diamine, tetramethyl-ethylenediamine, diethylenetriamine, diazabicyclooctane, 1,4,7-trimethyl-1,4,7-triazacyclononane, N,N′-dimethyl-ethane-1,2-diimine, N,N′-di-tert-butyl-ethane-1,2-diimine, N,N′-di-t-butyl-butane-2,3-diimine, N,N′-diphenyl-ethane-1,2-diimine, N,N′-bis-(2,6-dimethylphenyl)-ethane-1,2-diimine, N,N′-bis-(2,6-diisopropyl-phenyl)-ethane-1,2-diimine, N,N′-bis-(2,6-di-t-butyl-phenyl)-ethane-1,2-diimine, N,N′-diphenyl-butane-2,3-diimine, N,N′-bis-(2,6-dimethyl-phenyl)-butane-2,3-diimine, N,N′-bis-(2,6-diisopropyl-phenyl)-butane-2,3-diimine, N,N′-bis-(di-t-butyl-2,6-phenyl)-butane-2,3-diimine, pyridine, picolines, t-butylpyridine, bipyridine, di-t-butyl-bipyridine, imidazole, N-methylimidazole, N-butylimidazole, benzimidazole, pyrrole, N-methylpyrrole and 2,6-dimethylpyrrole.
The nitrogen-containing ligand can also include other organic functions, such as alcohol, aldehyde, ketone, carboxylic acid, ester, nitrile, quaternary ammonium and/or phosphonium, also sulfonium functions. Non limiting examples which can be cited are picolinic acids and esters, 2,6-dialkoxypyridines, salicylaldimines, 2,6-bis-N-aryliminopyridines, 1-dialkyl (and diaryl) phosphino-2-(4-pyridyl)ethanes, alkyl 2-(4-pyridyl)-acetates, alkyl 2-(2-pyridyl)-acetates, ethylene glycol bis-3-(4-pyridyl)-propanoate, 2-(2-pyridyl)-ethanol, 3-(2-pyridyl)-propanol and 3-(2-pyridyl)-propyl acetate.
The non-aqueous ionic solvent is selected from the group formed by liquid salts with general formula Q
+
A

where Q
+
represents quaternary ammonium and/or quaternary phosphonium and A

represents any anion which can form a liquid salt at low temperature, i.e., below 90° C. and advantageously at most 85° C., preferably below 50° C. Preferred anions A

are acetate, halogenoacetate, tetrafluoroborate, tetrachloroborate, hexafluorophosphate, hexafluoroantimonate, fluorosulfonate, perfluoroalkylsulfonate, bis-(perfluoroalkylsulfonyl)amide and arene-sulfonate ions.
The quaternary ammonium and/or phosphonium ions preferably have general formula NR
1
R
2
R
3
R
4+
and PR
1
R
2
R
3
R
4+
or general formula R
1
R
2
N═CR
3
R
4+
or R
1
R
2
P═CR
3
R
4+
, where R
1,
R
2
, R
3
, and R
4
, which may be identical or different, represent hydrogen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalyst based on cobalt and/or rhodium employed in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalyst based on cobalt and/or rhodium employed in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst based on cobalt and/or rhodium employed in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3203275

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.