Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Metal – metal oxide or metal hydroxide
Reexamination Certificate
2000-09-20
2002-02-26
Bell, Mark L. (Department: 1623)
Catalyst, solid sorbent, or support therefor: product or process
Catalyst or precursor therefor
Metal, metal oxide or metal hydroxide
C502S202000, C502S204000, C502S215000, C502S305000, C502S355000
Reexamination Certificate
active
06350716
ABSTRACT:
The present invention relates to a catalyst for the oxidation of ethane and/or ethylene to acetic acid and to a process for the production of acetic acid utilising the aforesaid catalyst.
Catalysts and processes for the production of acetic acid by the oxidation of ethane and ethylene are known in the art from, for example, U.S. Pat. No. 4,250,346; EP-A-0407091; DE-A-19620542; and DE-A-19630832.
U.S. Pat. No. 4,250,346 discloses the oxidative dehydrogenation of ethane to ethylene in a gas phase reaction at relatively high levels of conversion, selectivity and productivity at a temperature less than 500° C. using as catalyst a composition comprising the elements molybdenum, X and Y in the ratio
Mo
a
X
b
Y
c
wherein
X is Cr, Mn, Nb, Ta, Ti, V and/or W, and preferably Mn, Nb, V and/or W
Y is Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U, and preferably Sb, Ce and/or U,
a is 1,
b is 0.05 to 1.0 and
c is 0 to 2, and preferably 0.05 to 1.0, with the proviso that the total value of c for Co, Ni and/or Fe is less than 0.5.
EP-A-0407091 discloses a process for the production from gaseous ethane and/or ethylene of a product comprising ethylene and/or acetic acid, by contacting the ethane and/or ethylene and a molecular oxygen-containing gas at elevated temperature with a calcined molybdenum-containing ethane oxidative dehydrogenation catalyst composition characterised in that molybdenum in the oxidative dehydrogenation catalyst composition is replaced in whole or in part by either rhenium or a combination of rhenium and tungsten.
Also disclosed in EP-A-0407091 is a catalyst comprising the elements A, X and Y in combination with oxygen, the gram-atom ratios of the elements A:X:Y being a:b:c,
wherein A=Mo
d
R
e
W
f
,
X=Cr, Mn, Nb, Ta, Ti, V and/or W, and preferably Mn, Nb, V and/or W,
Y=Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U, and preferably Sb, Ce and/or U,
a=1,
b=0 to 2, preferably 0.05 to 1.0,
c=0 to 2, preferably 0.001 to 1.0, and more preferably 0.05 to 1.0 with the proviso that the total value of c for Co, Ni, and/or Fe is less than 0.5,
d+e+f=a,
d is either zero or greater than zero,
e is greater than zero, and
f is either zero or greater than zero.
DE-A-19620542 discloses a catalyst for the selective oxidation of ethane and/or ethylene to acetic acid containing the elements Mo, Pd, Re, X and Y in the gram atom ratios a:b:c:d:e in combination with oxygen
Mo
a
Pd
b
Re
c
X
d
Y
e
(I)
where the symbols X, Y have the following signification:
X=Cr, Mn, Nb, B, Ta, Ti, V and/or W
Y=Bi, Ce, Co, Cu, Te, Fe, Li, K, Na, Rb, Be, Mg, Ca, Sr, Ba, Ni, P, Pb, Sb, Si, Sn, Tl and/or U;
the indices a, b, c, d and e stand for the gram atom ratios of the corresponding elements, where a=1, b>0, c>0, d=0.05 to 2 and e=0 to 3. Also disclosed in DE-A-19620542 is a process for the selective production of acetic acid from a gaseous charge of ethane, ethylene or mixtures thereof in addition to oxygen by bringing the gaseous charge into contact with a catalyst of the formula (I).
Finally, DE-A-19630832 discloses a catalyst for the selective oxidation of ethane, ethylene or mixtures thereof as well as oxygen, containing the elements Mo, Pd, X and Y in the gram ratios a:b:c:d in combination with oxygen
Mo
a
Pd
b
X
c
Y
d
(I)
where the symbols X, Y have the following signification:
X stands for one or more of the elements selected from the group Cr, Mn, Nb, Ta, Ti, V and W;
Y stands for one or more of the elements selected from the group B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Au, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, and U;
the indices a, b, c, d stand for the gram atom ratios of the corresponding elements, where
a=1; b>0; c>0 and d=0-2. Also disclosed in DE-A-19630832 is a process for the selective production of acetic acid from a gaseous charge of ethane; ethylene or mixtures thereof in addition to oxygen by contacting the gaseous charge with a catalyst of the formula (I).
International patent publication WO 98/47850 published after the priority date of the present application relates to a process and catalyst for preparing acetic acid by catalytic oxidation of ethane. The catalyst used has the formula W
a
X
b
Y
c
Z
d
in which X stand for one or more elements selected from the group Pd, Pt, Ag and/or Au; Y stands for one or more elements selected from the group V, Nb, Cr, Mn, Fe, Sn, Sb, Cu, Zn, U, Ni and/or Bi; Z stands for one or more elements selected from the group Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Ru, Os, Co, Rh, Ir, B, Al, Ga, In, Tl, Si, Ge, Pb, P, As and/or Te in the formula a=1, b is greater than 0, c is greater than 0 and d is a number from 0 to 2. Tungsten is thus an essential component of the catalyst.
U.S. Pat. No. 5,750,777 (equivalent to EP-A-719756) relates to production of acetic acid by oxidation of ethane in the presence of a catalyst in which the active phase comprises vanadium, titanium, molybdenum, phosphorus and oxygen which includes a dopant from the following elements: K, Rb, Cs, Ca, Mg, Zr, Hf, Nb, Ta, Cr, W, Mn, Re, Fe, Ru, Os, Rh, Ir, Ni, Pd, Cu, Ag, Zn, Cd, Ti, Si, Ge, Sn, As, Sb, Bi, Ga and the rare earths. However, there are no specific examples containing silver or iridium.
U.S. Pat. No. 4,568,790 relates to a process for the low temperature catalytic oxydehydrogenation of ethane to ethylene in a gas phase using a catalyst having a calcined composition of Mo
a
V
b
Nb
c
Sb
d
wherein a=0.5 to 0.9, b=0.1 to 0.4, c=0.001 to 0.2 and d=0.001 to 0.1.
U.S. Pat. No. 4,596,787 relates to a process for preparing a supported catalyst for the low temperature oxydehydrogenation of ethane to ethylene in a gas phase, including catalysts having a calcined composition containing Mo
a
V
b
Nb
c
Sb
d
X
e
wherein X=nothing or at least one of the following: Li, Sc, Na, Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Y, Ta, Cr, Fe, Co, Ni, Ce, La, Zn, Cd, Hg, Al, Tl, Pb, As, Bi, Te, U, Mn and W, a=0.5 to 0.9, b=0.1 to 0.4, c=0.001 to 0.2, d=0.001 to 0.1 and e=0.001 to 1.0 for X equal to at least one element and e=0 for X=0.
There remains a need for a catalyst for the selective oxidation of ethane and/or ethylene to acetic acid and a process for the selective production of acetic acid employing the catalyst. We have found that oxidation catalysts employing silver and/or iridium as an essential component can fulfill the need for a selective oxidation catalyst and process employing same.
Accordingly, the present invention provides a catalyst composition for the selective oxidation of ethane and/or ethylene to acetic acid which composition comprises in combination with oxygen the elements:
Mo
a
.W
b
.Ag
c
.Ir
d
.X
e
.Y
f
(I)
wherein X is the elements Nb and V;
Y is one or more elements selected from the group consisting of:
Cr, Mn, Ta, Ti, B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Cu, Au, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re and Pd;
a, b, c, d, e and f represent the gram atom ratios of the elements such that
0<a≦1, 0≦b<1 and a+b=1;
0<(c+d)≦0.1;
0<e≦2; and
0≦f≦2.
Catalysts embraced within the formula (I) include:
Mo
a
.W
b
.Ag
c
.X
e
Y
f
Mo
a
.W
b
.Ir
d
.X
e
Y
f
Mo
a
.W
b
.[Ag+Ir]
c+d
.X
e
.Y
f
Mo
a
.Ag
c
.X
e
.Y
f
Mo
a
.Ir
d
.X
e
.Y
f
Mo
a
.[Ag+Ir]
c+d
.X
e
.Y
f
[Mo+W]
a+b
.Ag
e
.X
e
.Y
f
[Mo+W]
a+b
.Ir
d
.X
e
.Y
f
[Mo+W]
a+b
.[Ag+Ir]
c+d
.X
e
.Y
f
Examples of suitable catalysts having the formula (I) include:
(i) Mo
0.37
.Ag
0.01
.Re
0.25
.V
0.26
.Nb
0.07
.Sb
0.03
. Ca
0.02
.Oy′ which renormalised on the basis of Mo is the same as Mo
1.00
.Re
0.069
.V
0.72
.Nb
0.25
.Sb
0.08
. Ca
0.03
.Ag
0.028
Oy;
(ii) Mo
0.37
.Ir
0.01
.Re
0.25
.V
0.26
.N
Cook John
Ellis Brian
Howard Philip
Jones Michael David
Kitchen Simon James
Bell Mark L.
BP Chemicals Limited
Hailey Patricia L.
Nixon & Vanderhye
LandOfFree
Catalyst and process for the oxidation of ethane and/or... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catalyst and process for the oxidation of ethane and/or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst and process for the oxidation of ethane and/or... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2936292