Coating processes – Coating remains adhesive or is intended to be made adhesive
Reexamination Certificate
2000-01-28
2003-02-11
Silverman, Stanley S. (Department: 1754)
Coating processes
Coating remains adhesive or is intended to be made adhesive
C106S632000, C156S325000, C502S002000, C502S324000, C502S400000, C502S439000, C502S506000, C502S514000
Reexamination Certificate
active
06517899
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus for cleaning the atmosphere; and more particularly to a vehicle comprising at least one atmosphere contacting surface having a pollution treating composition thereon, and a related method and composition.
2. Discussion of the Related Art
A review of literature relating to pollution control reveals that the general approach is to reactively clean waste streams entering the environment. If too much of one pollutant or another is detected or being discharged, the tendency has been to focus on the source of the pollutant, the cause of the pollutant or the waste stream containing the pollutant. For the most part gaseous streams are treated to reduce the pollutants prior to entering the atmosphere.
It has been disclosed to treat atmospheric air directed into a confined space to remove undesirable components in the air. However, there has been little effort to treat pollutants which are already in the environment; the environment has been left to its own self cleansing systems. References are known which disclose proactively cleaning the environment. U.S. Pat. No. 3,738,088 discloses an air filtering assembly for cleaning pollution from the ambient air by utilizing a vehicle as a mobile cleaning device. A variety of elements are disclosed to be used in combination with a vehicle to clean the ambient air as the vehicle is driven through the environment. In particular, there is disclosed ducting to control air stream velocity and direct the air to various filter means. The filter means can include filters and electronic precipitators. Catalyzed postfilters are disclosed to be useful to treat nonparticulate or aerosol pollution such as carbon monoxide, unburned hydrocarbons, nitrous oxide and/or sulfur oxides, and the like. German Patent DE 43 18 738 C1 also discloses a process for the physical and chemical cleaning of outside air. Motor vehicles are used as carriers of conventional filters and/or catalysts, which do not constitute operational components of the vehicle but are used to directly clean atmospheric air.
Another approach is disclosed in U.S. Pat. No. 5,147,429. There is disclosed a mobile airborne air cleaning station. In particular this patent features a dirigible for collecting air. The dirigible has a plurality of different types of air cleaning devices contained therein. The air cleaning devices disclosed include wet scrubbers, filtration machines, and cyclonic spray scrubbers.
The difficulty with the above recited devices disclosed to proactively clean the atmospheric air is that they require new and additional equipment. Even the modified vehicle disclosed in U.S. Pat. No. 3,738,088 requires ducting and filters which can include catalytic filters.
DE 40 07 965 C2 to Klaus Hager discloses a catalyst comprising copper oxides for converting ozone and a mixture of copper oxides and manganese oxides for converting carbon monoxide. The catalyst can be applied as a coating to a self heating radiator, oil coolers or charged-air coolers. The catalyst coating comprises heat resistant binders which are also gas permeable. It is indicated that the copper oxides and manganese oxides are widely used in gas mask filters and have the disadvantage of being poisoned by water vapor. However, the heating of the surfaces of the automobile during operation evaporates the water. In this way, continuous use of the catalyst is possible since no drying agent is necessary.
Manganese oxides are known to catalyze the oxidation of ozone to form oxygen. Many commercially available types of manganese compound and compositions, including alpha manganese oxide are disclosed to catalyze the reaction of ozone to form oxygen. In particular, it is known to use the cryptomelane form of alpha manganese oxide to catalyze the reaction of ozone to form oxygen.
Alpha manganese oxides are disclosed in references such as O'Young, Hydrothermal Synthesis of Manganese Oxides with Tunnel Structures, Modern Analytical Techniques for Analysis of Petroleum, presented at the Symposium on Advances in Zeolites and Pillared Clay Structures before the Division of Petroleum Chemistry, Inc. American Chemical Society New York City Meeting, Aug. 25-30, 1991 beginning at page 348. Such materials are also disclosed in U.S. Pat. No. 5,340,562 to O'Young, et al. Additionally, forms of &agr;-MnO
2
are disclosed in McKenzie, the Synthesis of Birnessite, Cryptomelane, and Some Other Oxides and Hydroxides of Manganese, Mineralogical Magazine, December 1971, Vol. 38, pp. 493-502. For the purposes of the present invention, &agr;-MnO
2
is defined to include hollandite (BaMn
8
O
16
.xH
2
O), cryptomelane (KMn
8
O
16
.xH
2
O), manjiroite (NaMn8O
16
.xH
2
O) and coronadite (PbMn
8
O
16
.xH
2
O). O'Young discloses these materials to have a three dimensional framework tunnel structure (U.S. Pat. No. 5,340,562 and O'Young Hydrothermal Synthesis of Manganese Oxides with Tunnel Structures both hereby incorporated by reference). For the purposes of the present invention, &agr;-MnO
2
is considered to have a 2×2 tunnel structure and to include hollandite, cryptomelane, manjiroite and coronadite.
SUMMARY OF THE INVENTION
The present invention relates to an apparatus, method and composition to treat the atmosphere. For the purposes of the present invention atmosphere is defined as the mass of air surrounding the earth.
The present invention is directed to an apparatus and related method for treating the atmosphere comprising a vehicle and a means such as a motor to translate the vehicle from one place to another through the atmosphere. The vehicle comprises at least one atmosphere contacting vehicle surface and a pollutant treating composition located on that surface. The atmosphere contacting surface is a surface of a component of the vehicle that is in direct contact with the atmosphere. Preferred and useful atmosphere contacting surfaces include body surfaces, wind deflector surfaces, grill surfaces, mirror backs and the surfaces of “under the hood” components. Preferred atmosphere contacting surfaces are located within the body of the motor vehicle, typically in proximity to the engine, i.e., the engine compartment. The surfaces are preferably the surfaces of cooling means which comprise an in flow path for liquids or gases through a coolant walled enclosure such as tubes or a housing and an outer surface on which is located fins to enhance heat transfer. Preferred atmosphere contacting surfaces comprise a finned outer surface and are selected from the outer surfaces of the radiator, air conditioner condenser, the surfaces of the radiator fan, engine oil cooler, transmission oil cooler, power steering fluid cooler and air charge cooler also referred to as an intercooler or after cooler. The most preferred atmosphere contacting surfaces are the outer surfaces of the air conditioner condenser and radiator due to their large surface area and relatively high ambient operating temperatures of from about 40° C. to 135° C. and typically up to 110° C.
An advantage of the present invention is that the atmosphere contacting surface useful to support a pollution treating composition can be the surface of existing vehicle components. No additional filter, or apparatus to support a pollutant treating composition, is required. Accordingly, the apparatus and method of the present invention can be located on existing components of new cars or retrofitted onto old cars. Retrofitting may comprise coating a suitable pollutant treating composition on an existing vehicle surface which comes in contact with atmospheric air as the vehicle is driven through the atmosphere.
The present invention is directed to compositions, methods and articles to treat pollutants in air. Such pollutants may typically comprise from 0 to 400 parts, more typically 1 to 300, and yet more typically 1 to 200, parts per billion (ppb) ozone; 0 to 30 parts, and more typically 1 to 20, parts per million (ppm) carbon monoxide; and 2 to 3000 ppb unsaturated hydrocarbon comp
Heck Ronald M.
Hoke Jeffrey B.
Engelhard Corporation
Lindenfeldar Russell G.
Silverman Stanley S.
Vanoy Timothy C.
LandOfFree
Catalyst and adsorption compositions having adhesion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catalyst and adsorption compositions having adhesion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalyst and adsorption compositions having adhesion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3127490