Casting metal strip

Metal founding – Means to shape metallic material – Continuous or semicontinuous casting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S607000

Reexamination Certificate

active

06220335

ABSTRACT:

BACKGROUND TO THE INVENTION
This invention relates to the casting of metal strip. It has particular but not exclusive application to the casting of ferrous metal strip.
It is known to cast metal strip by continuous casting in a twin roll caster. Molten metal is introduced between a pair of contra-rotated horizontal casting rolls which are cooled so that metal shells solidify on the moving roll surfaces and are brought together at the nip between them to produce a solidified strip product delivered downwardly from the nip between the rolls. The term “nip” is used herein to refer to the general region at which the rolls are closest together. The molten metal may be poured from a ladle into a smaller vessel or a series of smaller vessels from which it flows through a metal delivery nozzle located above the nip so as to direct it into the nip between the rolls, so forming a casting pool of molten metal supported on the casting surfaces of the rolls immediately above the nip. This casting pool may be confined between side plates or dams held in sliding engagement with the ends of the rolls.
Although twin roll casting has been applied with some success to non-ferrous metals which solidify rapidly on cooling, there have been problems in applying the technique to the casting of ferrous metals which have high solidification temperatures and tend to produce defects caused by uneven solidification at the chilled casting surfaces of the rolls. Much attention has therefore been given to the design of metal delivery nozzles aimed at producing a smooth even flow of metal to and within the casting pool. U.S. Pat. Nos. 5,178,205 and 5,238,050 both disclose arrangements in which the delivery nozzle extends below the surface of the casting pool and incorporates means to reduce the kinetic energy of the molten metal flowing downwardly through the nozzle to a slot outlet at the submerged bottom end of the nozzle. In the arrangement disclosed in U.S. Pat. No. 5,178,205 the kinetic energy is reduced by a flow diffuser having a multiplicity of flow passages and a baffle located above the diffuser. Below the diffuser the molten metal moves slowly and evenly out through the outlet slot into the casting pool with minimum disturbance. In the arrangement disclosed in U.S. Pat. No. 5,238,050 streams of molten metal are allowed to fall so as to impinge on a sloping side wall surface of the nozzle at an acute angle of impingement so that the metal adheres to the side wall surface to form a flowing sheet which is directed into an outlet flow passage. Again the aim is to produce a slowly moving even flow from the bottom of the delivery nozzle so as to produce minimum disruption of the casting pool.
Japanese Patent Publication 5-70537 of Nippon Steel Corporation also discloses a delivery nozzle aimed at producing a slow moving even flow of metal into the casting pool. The nozzle is fitted with a porous baffle/diffuser to remove kinetic energy from the downwardly flowing molten metal which then flows into the casting pool through a series of apertures in the side walls of the nozzle. The apertures are angled in such a way as to direct the in-flowing metal along the casting surfaces of the rolls longitudinally of the nip. More specifically, the apertures on one side of the nozzle direct the in-flowing metal longitudinally of the nip in one direction and the apertures on the other side direct the in-flowing metal in the other longitudinal direction with the intention of creating a smooth even flow along the casting surfaces with minimum disturbance of the pool surface.
After an extensive testing program we have determined that a major cause of defects is premature solidification of molten metal in the regions where the pool surface meets the casting surfaces of the rolls, generally known as the “meniscus” or “meniscus regions” of the pool. The molten metal in each of these regions flows towards the adjacent casting surface and if solidification occurs before the metal has made uniform contact with the roll surface it tends to produce irregular initial heat transfer between the roll and the shell with the resultant formation of surface defects, such as depressions, ripple marks, cold shuts or cracks.
Previous attempts to produce a very even flow of molten metal into the pool have to some extent exacerbated the problem of premature solidification by directing the incoming metal away from the regions at which the metal first solidifies to form the shell surfaces which eventually become the outer surfaces of the resulting strip. Accordingly, the temperature of the metal in the surface region of the casting pool between the rolls is significantly lower than that of the incoming metal. If the temperature of the molten metal at the pool surface in the region of the meniscus becomes too low then cracks and “meniscus marks” (marks on the strip caused by the meniscus freezing while the pool level is uneven) are very likely to occur. One way of dealing with this problem has been to employ a high level of superheat in the incoming metal so that it can cool within the casting pool without reaching solidification temperatures before it reaches the casting surfaces of the rolls. In recent times, however, it has been recognised that the problem can be addressed more efficiently by taking steps to ensure that the incoming molten metal is delivered relatively quickly by the nozzle directly into the meniscus regions of the casting pool. This minimises the tendency for premature freezing of the metal before it contacts the casting roll surfaces. It has been found that this is a far more effective way to avoid surface defects than to provide absolutely steady flow in the pool and that a certain degree of fluctuation in the pool surface can be tolerated since the metal does not solidify until it contacts the roll surface. Examples of this approach are to be seen in Japanese Patent Publication No. 64-5650 of Nippon Steel Corporation and the present applicants' Australian Patent Application No. 60773/96.
In order to ensure that the incoming molten metal is delivered relatively quickly into the meniscus regions of the casting pool, it is necessary to employ delivery nozzles with side outlet openings to deliver the metal laterally outwardly from the bottom part of the delivery nozzle toward the casting rolls. Accordingly, the delivery nozzle is required to capture a downwardly falling stream of molten metal and produce steady outward flow of metal through the side outlet openings with as little turbulence and flow fluctuation as possible. This requires that the downward kinetic energy of the incoming stream be absorbed and that essentially non-turbulent conditions be established at the side outlet openings. Moreover, this must be achieved within the very confined space within the bottom of the delivery nozzle without significant restriction of the flow. The previous baffle and diffuser arrangements are not suitable for this purpose but the present invention provides a simple method and means whereby this may be achieved.
SUMMARY OF THE INVENTION
According to the invention there is provided a method of casting metal strip comprising:
introducing molten metal between a pair of chilled casting rolls via an elongate metal delivery nozzle disposed above and extending along the nip between the rolls to form a casting pool of molten metal supported above the nip and confined at the ends of the nip by pool confining end closures, and
rotating the rolls so as to cast a solidified strip delivered downwardly from the nip;
wherein the metal delivery nozzle comprises an upwardly opening elongate trough having a floor and side walls extending longitudinally of the nip to receive the molten metal, the longitudinal side walls of the trough are provided with side outlet openings through which the molten metal is caused to flow from the trough, the floor of the trough is provided with upstanding flow barrier walls adjacent the side outlet openings and molten metal is delivered downwardly into the trough between said flow barrier walls to impinge on th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Casting metal strip does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Casting metal strip, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Casting metal strip will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2448157

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.