Cascade polymer complexes, process for producing the same and ph

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Nitrogen-containing reactant

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

528422, 424 9363, 424 9364, 534 16, 534184, 540465, 540474, 514836, C08G 7306

Patent

active

060574194

DESCRIPTION:

BRIEF SUMMARY
The invention relates to the object characterized in the claims, i.e., new cascade polymer complexes, agents that contain these compounds, the use of the complexes in diagnosis and therapy, and a process for the production of these compounds and agents.
The contrast media that are now used in clinical practice for the modern imaging processes of nuclear spin tomography (MRI) and computer tomography (CT) [Magnevist.sup.(R), Pro Hance.sup.(R), Ultravist.sup.(R) and Omniscan.sup.(R) ] are dispersed in the entire extracellular space of the body (intravascular space and interstitium). This dispersion space comprises about 20% of the volume of the body.
In clinical practice, extracellular MRI contrast media were first used successfully in the diagnosis of cerebral and spinal disease processes since here a quite special situation exists with respect to the regional dispersion space. In the brain and spinal cord, extracellular contrast media in healthy tissue do not leave the intravascular space because of the blood-brain barrier. In the case of pathological processes with disruption of the blood-brain barrier (e.g., malignant tumors, inflammations, demyelinating diseases, etc.), regions with elevated blood-vessel permeability then develop inside the brain for these extracellular contrast media (Schmiedl et al., MRI of Blood-Brain Barrier Permeability in Astrocytic Gliomas: Application of Small and Large Molecular Weight Contrast Media, Magn. Reson. Med. 22: 288, 1991). Affected tissue can be identified with high contrast relative to healthy tissue by exploiting this disruption of vascular permeability.
Outside of the brain and the spinal cord, however, no such permeability barrier exists for the above-mentioned contrast media (Canty et al., First-Pass Entry of Nonionic Contrast Agent into the Myocardial Extravascular Space. Effects on Radiographic Estimate of Transit Time and Blood Volume. Circulation 84: 2071, 1991). Thus, the concentration of the contrast medium is no longer dependent on vascular permeability, but only on the size of the extracellular space in the corresponding tissue. Delimitation of the vessels relative to the surrounding interstitial space using this contrast medium is not possible.
A contrast medium that is dispersed exclusively in the vascular space would be desirable, particularly for the visualization of vessels. The purpose of such a blood-pool agent is to make it possible, with the aid of nuclear spin tomography, to delimit tissue with sufficient blood supply from tissue with insufficient blood supply, and thus to diagnose an ischemia. Infarcted tissue can also be delimited, based on its anemia, from surrounding healthy or ischemic tissue if a vasal contrast medium is used. This is of special importance if, e.g., the point is to distinguish a myocardial infarction from an ischemia.
To date, most of the patients in whom there is suspicion of cardiovascular disease (this disease is the most frequent cause of death in Western industrialized countries) have to undergo invasive diagnostic tests. In angiography at present, diagnostic radiology with the aid of iodine-containing contrast media is used in particular. These tests suffer from various drawbacks: they are associated with the risk of radiation exposure, as well as with difficulties and stresses, which therefore particularly have the effect that the iodine-containing contrast media, as compared with NMR contrast media, have to be used in much higher concentrations.
There is therefore a need for NMR contrast media which can mark the vascular space (blood-pool agents). These compounds are to be distinguished by good compatibility and by high effectiveness (high increase of signal intensity with MRI).
Thus far, the attempt to solve at least a part of this problem by using complexing agents that are bonded to macromolecules or biomolecules has been successful only to a limited extent.
Thus, for example, the number of paramagnetic centers in the complexes that are described in European Patent Applications No. 0 088 695 and No. 0 150 844 i

REFERENCES:
patent: 5759518 (1998-06-01), Willich et al.
patent: 5919433 (1999-07-01), Platzek et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cascade polymer complexes, process for producing the same and ph does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cascade polymer complexes, process for producing the same and ph, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cascade polymer complexes, process for producing the same and ph will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1594750

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.