Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Meniscus
Reexamination Certificate
2000-03-14
2003-10-14
McDermott, Corrine (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Meniscus
C623S023480
Reexamination Certificate
active
06632246
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to the field of orthopedic surgery for the repair and replacement of damaged natural cartilage in a living mammal particularly human beings. More specifically, this invention relates to devices, methods, and instruments for the replacement of defective natural cartilage, where the defects are caused by traumatic injury which brings about sudden, acute damage to the cartilage, and/or by disease or the long term effects of unrepaired cartilage injuries, which over prolonged periods of time, cause a chronic deterioration of the cartilage. Still more specifically, the invention relates to an artificial device, made from a biocompatible material, in the form of a cartilage replacement plug, which is used individually or in multiples, to fill void cavities in cartilage created by the resection and removal of damaged or diseased portions of the natural cartilage or to anchor material that is used to fill such cavities; to a method for resecting damaged or diseased portions of natural cartilage and replacing the removed portion of natural cartilage with one or more such artificial cartilage replacement plugs; to a set of instruments for performing the natural cartilage resection and removal procedure to create a void cavity in the cartilage and for performing the artificial cartilage replacement plug implantation procedure; and to a surgical system for orthopedic surgeons which includes a selection of cartilage plugs of various sizes and shapes needed for performing a number of procedures of varying scope and extent, at various body sites, as well as a set of the surgical instruments needed to perform both the defective cartilage removal procedure and the cartilage plug implantation procedure, with all elements being maintained in a sterile environment in a self-contained carrier, ready for surgical use.
BACKGROUND OF THE INVENTION
Human cartilage has very unique properties. It is one of the few a vascular tissues in the body. It serves to prevent bone growth into the articulating surface of joints, which would otherwise interfere with the motion of such joints. Cartilage is semipermeable and receives its nutrients from the synovial fluid which surrounds cartilaginous tissue in articulating joints and which diffuses into the cartilage during motion of the joint. Cartilage itself also possesses viscoelastic and lubricating properties. Materials which are proposed for use in the repair or replacement of natural cartilage must possess physical and mechanical properties which are as close as possible to those of natural cartilage.
Younger persons, ranging in age from children to young adults, often engage extensively in rigorous athletic activities, such as skiing, surfing, football, basketball, and even roller blading, which frequently results in accidents which cause traumatic injury to cartilage, particularly that surrounding the knees, elbows, and shoulders. In the U.S. alone, there are well over 300,000 such injuries per year. Most of these injuries are to the anterior cruciate ligament of the knee, which frequently becomes torn. Younger persons are also occasionally afflicted with arthritic diseases, such as juvenile rheumatoid and osteoarthritis, which cause degeneration of cartilage. Osteoarthritis may also set-in following a traumatic injury to cartilage which is not repaired or is repaired improperly, leading to a further deterioration of the previously damaged cartilage. The extent of the cartilage defect, resulting either from traumatic injury or chronic disease, can vary considerably from a small area to a larger, more widespread area, or even involve all of the cartilage of an entire joint, depending on the extent of the injury or the extent of the spread of the disease. When the defect is caused by traumatic injury and is extensive enough in size to involve a large mass of cartilage, the damage is not capable of self-healing. Heretofore it was not possible to repair extensive cartilage defects. Such damaged cartilage had to be removed and replaced. Often this required complete joint replacement surgery. Cartilage which has become defective through damage caused by traumatic injury from accident, whether sports related or from other causes, such as an automobile accident, as well as cartilage which has become defective as a result of deterioration due to the spread of a chronic degenerative disease, also typically gives rise to and is accompanied by severe pain, especially where the sites of the damage or disease is proximal to or constitutes part of an articulating joint surface, such as the knee. The damaged or diseased portion of the cartilage is usually also accompanied by swelling of the surrounding tissue; and, where an articulating joint is involved, a disruption in the flow of lubricating synovial fluid around the joint often occurs, which, in addition to being a cause of the source of pain, usually leads to further mechanical abrasion, wear, and deterioration of the cartilage itself, finally resulting in the onset of osteoarthritis and complete disablement of the articulating joint, ultimately requiring complete replacement of the joint.
Historically the only choices available to patients with cartilage damage, especially the cartilage of an articulating joint, such as a knee or elbow, were to initially do nothing if the extent of the damage was only relatively minor in scope, which sooner or later usually led to a worsening of the condition and further damage to the cartilage and to the joint itself, with the patient feeling discomfort and pain when using the joint, thus ultimately requiring a complete joint replacement to restore mobility; or, if the extent of the damage was significant to start with, to immediately perform a complete joint replacement. In the case of very young patients, however, complete replacement of a joint is problematic in that the patient's overall skeletal bone structure is not yet fully developed and is still growing, so that the replaced joint may actually be outgrown and no longer be of appropriate size for the patient when their fully matured adult size, stature, and skeletal structure is attained. Moreover, in the past, many replacement knee, elbow joints and shoulder joints have typically had a maximum active useful life of only about ten years, due to wear and tear and erosion of the articulating surfaces of the joint with repetitive use over time, thereby necessitating periodic invasive surgery to replace the entire joint. For a very young patient this meant that they would have to face the prospect for several more such surgeries over their lifetime, notwithstanding progress and improvements in the wearability of materials used for joint surfaces that have been made and continue to be made as new materials are developed.
In recent years a large number of devices and methods for the replacement of defective portions of natural cartilage have been proposed. Some of these have been directed at enabling the repair of larger portions of defective cartilage without having to resort to a full joint replacement, when an articulating joint is involved. Some of the proposed devices are made from natural cartilage which has been self-harvested or harvested from cadaveric sources, some devices are based on composite artificial materials, and some methods involve the growth of new natural cartilage material. A few of the proposed methods for natural cartilage replacement utilize artificial cartilage devices in the form of pre-formed plugs, which are used to fill-in void cavities created by the resection and removal of the damaged or diseased portion of cartilage from the patient.
The various approaches to the problem of cartilage repair and replacement can broadly be divided into those offering a long-term solution, and those offering a short-term solution. Biological approaches involving the growth of new replacement cartilage, either within or without the patient, are generally considered long-term solutions because of the time needed to regenerate the cartilage; while essentiall
Aberman Harold M.
Jackson Douglas W.
Simon Timothy M.
ChondroSite, LLC
Fulwider Patton Lee & Utecht, L.L.P.
McDermott Corrine
Phan Hieu
LandOfFree
Cartilage repair plug does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cartilage repair plug, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cartilage repair plug will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3114272