Carrier modulator for use in a transmitter or transceiver

Pulse or digital communications – Receivers – Automatic gain control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S219000

Reexamination Certificate

active

06671337

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a modulator for use in a transmitter or a transceiver, more particularly to a modulator for multiple modulation systems.
2. Description of the Related Art
U.S. Pat. No. 5,020,076 discloses a hybrid carrier modulator for a hybrid telephone having both digital and analog transmission circuits. The hybrid modulator has a first modulator for modulating a digital circuit and a second modulator for modulating an analog signal. The first modulator is a &pgr;/4-shift DPSK (Differential Quadrature Phase Shift Keying) modulator that modulates in-phase (I) and quadrature (Q) vector sources. After modulation, the quadrature modulated signals are mixed in a balanced quadrature mixer section with a carrier frequency provided by an oscillator, the I-signal being mixed with the oscillator signal and the Q-signal being mixed with a 90° shifted oscillator signal. The resulting signals from these two operations are then added at a summer to produce a carrier modulated signal that is nominally centered at the carrier frequency. The oscillator is the VCO (Voltage Controlled Oscillator) portion of a PLL (Phase Locked Loop) that also provides a transmit-IF (Intermediate Frequency) signal for FM (Frequency Modulation) when the modulator is operating in an analog mode. By modulating the PLL with an analog signal, which may include a voice signal, the PLL will produce a FM signal. In U.S. Pat. No. 5,020,076 thus a hybrid modulator is provided with a combined quadrature carrier modulator that alternatively modulates a digitally modulated quadrature signal or an analog transmit-IF signal.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a universal carrier modulator for use in a transmitter or a transceiver, i.e., a modulator that is suitable for multiple modulation systems.
It is another object to provide a low cost and simple modulator.
It is another object of the invention to provide a carrier modulator that rejects undesired harmonics produced in an amplitude restoration feedback loop and/or mixer products generated in an intermediate frequency quadrature transmit mixer.
In accordance with the invention a carrier modulator is provided comprising:
a quadrature modulator configured to provide a quadrature modulated signal at a first frequency;
a power amplifier providing a carrier modulator output signal at a second frequency, said power amplifier having a variable gain;
a phase locked loop comprising a phase comparator and a transmit local oscillator for generating a carrier signal at said second frequency, a first input of said phase comparator being coupled to said quadrature modulator and said transmit oscillator being coupled between said phase comparator and said power amplifier,
said phase locked loop further comprising a down-converter configured to down-convert said carrier modulator output signal to a feedback signal at said first frequency, said feedback signal being coupled to a second input of said phase comparator, said phase locked loop thereby replicating at said second frequency of angle information comprised in said quadrature modulated signal; and
an amplitude restoration arrangement for restoring from said quadrature modulated signal and said feedback signal of amplitude information comprised in said quadrature modulated signal, said amplitude restoration arrangement providing a variable gain control signal to said power amplifier until said feedback signal becomes substantially equal to said quadrature modulated signal.
The invention is based on the insight that a simple quadrature modulator can be used to easily generate any type of modulation at a low intermediate frequency, e.g. 40-150 MHz, and that then a common carrier modulator a high carrier frequency, e.g. 825 MHz, can replicate the modulated signal by separation of angle and amplitude information in the modulated signal and can replicate the separated angle and restore the amplitude information at the high carrier frequency. It has been recognized that the simply modulated signal forms a reference signal for the feedback loop.
In an embodiment of the carrier modulator the phase locked loop has a signal coupler that couples a part of the carrier modulated output signal to the down-converter in the feedback loop, with sufficient attenuation to eventually reconstruct the modulation signal at the low intermediate frequency.
In a preferred embodiment respective band pass filters are provided between an output of the down-converter and a feedback input of the phase comparator and between the quadrature modulator and an input of the phase detector. Herewith undesired harmonics are rejected that are produced by the down-converter and mixing products are rejected that are generated by the quadrature mixer.
The simple quadrature modulator can be any type of transmit modulator such as a DQPSK (Differential Quadrature Phase Shift Keying) modulator for use in a TDMA (Time Division Multiple Access) system as defined in US Standard IS54/136, a GMSK (Gaussian Minimum Shift Keying) modulator as defined in the European GSM (Global System for Mobile Communications) Standard, an 8-DQPSK modulator as defined in the 3G EDGE (Enhanced Data Rate for Global Evolution) Standard, or any other type of quadrature modulator at a low frequency.
In an embodiment the amplitude restoration arrangement has two envelope detectors, one of the envelope detectors detecting the feedback signal and another one of the envelope detectors detecting the simply generated modulate at the low intermediate frequency, and a comparator for comparing output signals of the envelope detectors and for generating a gain control signal for the transmit power amplifier. Herewith in the controlled feedback loop distortion in the transmit branch is eliminated and a substantially replicated modulated signal is obtained at the carrier frequency.
Because of having a voltage controlled oscillator in the transmit signal path of which an output is coupled to the transmit power amplifier, no further mixers are needed in the transmit path and thus there is no need for transmit filters in the signal path between the quadrature modulator and the transmit power amplifier. Such further mixers and transmit filters would be needed in conventional carrier modulators. The carrier modulator according to the invention can thus lead to a higher chip integration level. In addition thereto, because less severe linearity requirements are to be imposed on the transmit power amplifier, the transmit power amplifier can be made cheaper and can be operated at a higher efficiency. Operation at a higher efficiency leads to a highly desired reduction of battery power when the carrier modulator is used in a portable apparatus such as a cellular phone.


REFERENCES:
patent: 4333060 (1982-06-01), Mosley et al.
patent: 5020076 (1991-05-01), Cahill et al.
patent: 5471652 (1995-11-01), Hulkko
patent: 5511236 (1996-04-01), Umstattd et al.
patent: 5596600 (1997-01-01), Dimos et al.
patent: 5825813 (1998-10-01), Na
patent: 5835850 (1998-11-01), Kumar
patent: 5894592 (1999-04-01), Brueske et al.
patent: 6384677 (2002-05-01), Yamamoto
patent: 0998088 (2000-05-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Carrier modulator for use in a transmitter or transceiver does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Carrier modulator for use in a transmitter or transceiver, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carrier modulator for use in a transmitter or transceiver will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3170877

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.