Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
1999-12-30
2002-04-30
Picard, Leo P. (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S689000, C439S384000, C360S098010
Reexamination Certificate
active
06381139
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of computer systems, and more specifically to wrappers for computer peripherals.
BACKGROUND OF THE INVENTION
In many applications, users have the need to store and process vast amounts of data. Such high-performance storage systems can be used in a variety of applications, such as video, data-warehousing, and seismic analysis, and in applications such as database, financial, and technology development. To work efficiently the data storage system needs scalability and reliability.
Modular storage systems help meet these goals. In a modular storage system, many computer peripheral devices, such as disk drives, are placed together within a box or chassis. Each of the disk drives or other computer peripheral devices are mounted within an apparatus called a wrapper, drivesled, or drive carrier. These wrappers enclose each device, and provide mechanical support, vibration/shock damping, and provide easy handling to permit the device to be quickly plugged into a slot or dock in the chassis. A chassis can hold a great number of wrapped devices. Moreover, the individual device modules can be easily replaced if one is damaged.
Although modular storage systems offer a big enhancement in performance, it is important to note that using more hardware also increases the likelihood of a failure. Moreover, given that data is spread across multiple disks, a drive failure could be catastrophic. One potential source of disk drive failure is caused by mechanical rotational vibration propagating through the system. Generally, a disk drive actuator arm is driven by a voice coil motor (VCM). The current sent through the VCM induces a torque on the actuator. This causes a reaction torque in the drive itself which leads to a rotational vibration reaction in the disk drive. This vibration then propagates through the chassis to other modular drives in the system, adversely affecting them. In addition, self-excitation may be induced, adversely affecting the drive in question.
In the past, one method to minimize the effects of a hard drives's vibrations is to attach a spring to the wrapper enclosing the drive. The spring is located so that when the wrapper is inserted within a chassis, the spring presses against one wall of the chassis and forces the wrapper against the opposing wall of the chassis. This system thus forcibly holds the wrapper assembly in place, essentially squeezing the wrapper into the dock of the chassis.
Such an approach has some deficiencies. One problem is that it offers two vibration transmission paths since the wrapper is in pressured contact with both walls that are adjacent to it. Thus, any vibrations from a drive are propagated through both adjacent walls and thus to neighboring drives which are also engaged with that wall. This means that the neighboring hard drives in the adjacent slots are affected by the vibrations of the drive. Also, such a system requires that both sides of the dock be reinforced or designed stiffer since there is pressure exerted on both sides. Another problem is that such a spring design leads to unwanted bowing or deflection of the chassis. The bowing of the chassis leads to a spring force which varies along the length of the chassis so that a wrapper in the center of the dock would more than likely have a lower spring force than a wrapper located at one of the end points of the dock.
Thus, for these reasons and others that will become apparent to those skilled in the art upon reading the present specification, there is a need for a drive wrapper that is not as vulnerable to these vibration problems while retaining the advantages of easy, modular installation of computer peripherals.
SUMMARY
The present invention provides a computer peripheral carrier which prevents and minimizes the effects of rotational vibrations of peripherals. In one embodiment, a computer peripheral carrier includes a frame for enclosing the computer peripheral. The carrier also includes a clip or gripping member attached to the frame near one end of the frame. The clip is for gripping a dock section of the container chassis and permitting the carrier to be removably coupled to the dock section. In further embodiments, the clip has a first leg coupled to the frame and a second leg generally parallel to first leg, the second leg not coupled to the frame. When the clip is engaged to an edge of a chassis dock, the second leg is forced away from the first leg so that a gripping force occurs between the two legs. Thus the clip forcibly grips the edge of the dock while also being removably attached to the dock.
Another aspect of the present invention provides a computer peripheral modular system including a chassis having at least one dock. The chassis has a reinforced bottom dock panel and a top dock panel. The system includes a computer peripheral carrier adapted to fit within the dock. The computer peripheral carrier having a clip for removably coupling the computer peripheral carrier to an edge of the reinforced bottom deck panel.
Advantageously, the present invention provides a modular and easily installable drive carrier which alleviates problems caused by rotational vibration of computer peripheral devices. It permits a designer to construct a stronger, stiffer side to a dock, thus helping to prevent rotational vibrations. It also provides that any vibrations which do arise are only propagated along one side of the dock, thus reducing the number of variables in which a designer needs to focus on in dealing with rotational vibration problems.
REFERENCES:
patent: 4941841 (1990-07-01), Darden et al.
patent: 5277615 (1994-01-01), Hastings et al.
patent: 5673172 (1997-09-01), Hasting et al.
patent: 5886869 (1999-03-01), Fussell et al.
patent: 6058016 (2000-05-01), Anderson et al.
patent: 6067225 (2000-05-01), Reznikov et al.
Duong Hung Van
Picard Leo P.
Schwegman Lundberg Woessner & Kluth P.A.
Silicon Graphics Inc.
LandOfFree
Carrier for computer peripheral device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Carrier for computer peripheral device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carrier for computer peripheral device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2905516