Special receptacle or package – Article held in apertures of opposed walls
Reexamination Certificate
2001-04-24
2003-11-25
Yu, Mickey (Department: 3728)
Special receptacle or package
Article held in apertures of opposed walls
C206S388000, C206S391000
Reexamination Certificate
active
06651814
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to protective packaging of filamentary material to prevent damage during transit and more particularly to a carrier for a plurality of protective envelopes each containing a filament in the form of a coiled optical fiber.
BACKGROUND OF THE INVENTION
Communication systems have for decades relied upon signal transmission using networks of cables containing copper wires. Arrival of the era of broadband transmission has produced a transition to optical fiber waveguides as the basic conduits of communication signals. Increasing use of optical fiber networks typically translates into increased demand for optical fiber and related products to satisfy expanding telecommunications systems, particularly those involving on-line access. This requires that product suppliers accelerate their output rate and assembly to deliver products and systems according to the demand. Although frequently overlooked, the design of packaging used for product delivery may facilitate the further processing of a product at a receiving location. Suitable integration of production operations between manufacturing facilities leads to efficiency in the processing of optical fiber and related devices intended for use in communications systems.
Optical fiber communication networks frequently include refractive index gratings, also known as optical fiber Bragg gratings. Bragg gratings perform a number of functions related to control and wavelength selection of light within an optical fiber. A common way to incorporate a Bragg grating into a communication line requires splicing or connecting an optical fiber Bragg grating into a section of an optical fiber line. The optical fiber Bragg grating is usually less than ten meters in length.
Optical fibers are predictably brittle since they have the properties of glass. Any device using glass as the primary material of construction requires careful handling during manufacturing and transportation. For this reason current methods for shipping optical fiber Bragg gratings rely upon individual shipping packages containing optical fiber coils wrapped around somewhat flexible cardstock in the shape of circular discs. Upon receipt, by a customer, each coiled optical fiber Bragg grating requires individual handling and testing, as needed prior to incorporating the device into e.g. an optoelectronic assembly.
Current forms of shipping packages do not take into account either the steps of manufacture of an optoelectronic assembly or the space available at a manufacturing station to accommodate a number of loose packages containing optical fiber coils. Consequently, inspection and manufacture of devices using refractive index gratings, such as Bragg gratings, has little compatibility with high volume processing of devices. For this reason, there is a need for packaging of filaments, exemplified by optical fiber Bragg gratings, to facilitate inspection and volume manufacture of assemblies containing these filamentary products.
SUMMARY OF THE INVENTION
The present invention provides a carrier for a plurality of individually coiled filaments each contained in a protective envelope. Materials used for filament carriers according to the present invention preferably have properties suitable for use in clean room environments. A carrier according to the present invention has a structure and size that may be varied for compatibility with inspection and processing of filamentary devices held and protected by the carrier. Preferably the filamentary devices are optical fiber devices particularly optical fiber Bragg gratings.
A filament carrier according to the present invention varies from a substantially planar structure having organizing projections protruding from its surface to a more complex rectangular carrier, having ends and sides, produced during molding of a plastic resin. The complex carrier structure may include an elevated platform having an upper surface, a first end, and a second end. A stepped ledge lies on each side of the raised platform. The platform includes a plurality of evenly spaced projections formed adjacent to each stepped ledge. This places a row of projections close to the ledges. The rows of projections are parallel to each other. Preferably there is a retaining rail on each stepped ledge between the side of the carrier and the raised platform. Retaining rails may be either applied to the carrier surface or be molded into the structure. The retaining rails have a parallel orientation with the rows of projections. In addition the carrier may include reinforcement molded into at least one end for increased rigidity.
The evenly spaced projections have a separation from each other that is wide enough to receive the corner of a rectangular envelope. Envelope size and shape may vary depending on the size of a coil of filament and the dimensions of a carrier according to the present invention.
An envelope holds and protects a coil of filament, which is preferably an optical fiber coil. A gap between the rows of projections is wide enough to allow a rectangular envelope to lie flat on the platform with diagonally opposite corners extending into the space between a pair of projections in each row. The evenly spaced projections represent multiple pairs of projections that provide space to retain envelope corners. This allows the carrier to act as a container for a plurality of overlapping envelopes, each containing a filament coil, preferably an optical fiber coil.
Each optical fiber coil includes pigtail ends extending in exposed fashion from diagonally opposed corners of an envelope. Placement of an envelope between projections, as previously described, directs the pigtail ends towards the retaining rails. The retaining rails contain gripping slits into which pigtail ends may be inserted to protect them from contact and inadvertent damage. With suitable position in the gripping slits, the pigtail ends may be made available for connection to monitoring equipment, such as a spectrum analyzer, when the filament coil, in the form of an optical fiber, contains a refractive index grating or Bragg grating. The need to monitor an optical fiber device, such as a Bragg grating, advantageously may use sufficient optical fiber connectors, on the surface of the carrier, to connect the number of fiber coil envelopes held by a carrier.
The size of the carrier may vary depending on the number of envelopes needed, or the amount of space that may be available at a manufacturing station during the assembly of optoelectronic systems that contain optical devices such as Bragg gratings. Regardless of the size or space available in a given carrier there is frequently a need to pre-screen optical fiber devices to evaluate their properties before installing them in costly optoelectronic systems.
A structure of several tiers of carriers may be used to increase the number of filament coils that may be transported in a single package. Using a footprint of 10 inches×14 inches for its base, a preferred carrier will hold up to thirty envelopes containing filament coils. Multiples of each set of thirty envelopes result from stacking carriers one on top of another. The present invention includes the formation of stacked carriers in a covered container.
A carrier for coiled filaments, according to the present invention may be referred to as a carrying tray comprising a substantially planar base having a longitudinal axis. The carrying tray includes a first row of projections having spaces between them so that the first row of projections extends above the substantially planar base parallel to its longitudinal axis. Similarly, a second row of projections having spaces between them extends above the base parallel to the first row of projections and the longitudinal axis of the carrying tray such that there is a separation between the first row of projections and the second row of projections.
The carrying tray may further include a first rail of resilient material and a second rail of resilient material mounted on the substantially planar base parallel to
Afflerbaugh Martin G.
Higbee Thomas A.
3M Innovative Properties Company
Arnold Troy
Ball Alan
Rosenblatt Gregg H.
Yu Mickey
LandOfFree
Carrier for coiled filaments does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Carrier for coiled filaments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carrier for coiled filaments will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3126776