Cardiac stimulation device and method for storing diagnostic...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06643549

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to an implantable cardiac stimulation device capable of performing automatic capture. More specifically, the present invention is directed to a cardiac stimulation system and associated method for acquiring, storing, and displaying an evoked response feature log and a fusion event counter.
BACKGROUND OF THE INVENTION
In the normal human heart, the sinus node, generally located near the junction of the superior vena cava and the right atrium, constitutes the primary natural pacemaker initiating rhythmic electrical excitation of the heart chambers. The cardiac impulse arising from the sinus node is transmitted to the two atrial chambers, causing a depolarization known as a P-wave and the resulting atrial chamber contractions. The excitation pulse is further transmitted to and through the ventricles via the atrioventricular (A-V) node and a ventricular conduction system causing a depolarization known as an R-wave and the resulting ventricular chamber contractions.
Disruption of this natural pacemaking and conduction system as a result of aging or disease can be successfully treated by artificial cardiac pacing using implantable cardiac stimulation devices, including pacemakers and implantable defibrillators, which deliver rhythmic electrical pulses or anti-arrhythmia therapies to the heart at a desired energy and rate. A cardiac stimulation device is electrically coupled to the heart by one or more leads possessing one or more electrodes in contact with the heart muscle tissue (myocardium). One or more heart chambers may be electrically stimulated depending on the location and severity of the conduction disorder.
A stimulation pulse delivered to the myocardium must be of sufficient energy to depolarize the tissue, thereby causing a contraction, a condition commonly known as “capture.” In early pacemakers, a fixed, high-energy pacing pulse was delivered to ensure capture. While this approach is straightforward, it quickly depletes battery energy and can result in patient discomfort due to extraneous stimulation of surrounding skeletal muscle tissue.
The capture “threshold” is defined as the lowest stimulation pulse energy at which capture occurs. By stimulating the heart chambers at or just above threshold, comfortable and effective cardiac stimulation is provided without unnecessary depletion of battery energy. Threshold, however, is extremely variable from patient-to-patient due to variations in electrode systems used, electrode positioning, physiological and anatomical variations of the heart itself, and so on. Furthermore, threshold will vary over time within a patient as, for example, fibrotic encapsulation of the electrode occurs during the first few weeks after surgery. Fluctuations may even occur over the course of a day or with changes in medical therapy or disease state.
Hence, techniques for monitoring the cardiac activity following delivery of a stimulation pulse have been incorporated in modern pacemakers in order to verify that capture has indeed occurred. If a loss of capture is detected by such “capture-verification” algorithms, the output is automatically increased until capture is restored. A threshold test is then performed by the cardiac stimulation device in order to re-determine the threshold and automatically adjust the stimulating pulse output.
This approach, referred to as “automatic capture”, improves the cardiac stimulation device performance in at least four ways: 1) by verifying that the stimulation pulse delivered to the patient's heart has been effective, 2) by maintaining the stimulation pulse output at the lowest level possible thus 3) greatly increasing the device's battery longevity by conserving the energy used to generate stimulation pulses yet 4) always protecting the patient by providing a significantly higher output back-up pulse in the setting of loss of capture associated with the primary pulse.
One implemented technique for verifying capture automatically by an implantable stimulation device involves monitoring the internal myocardial electrogram (EGM) signal received on the cardiac stimulation and sensing electrodes. When a stimulation pulse is delivered to the heart, the EGM signals that are manifest concurrent with depolarization of the myocardium are examined. When capture occurs, an “evoked response” may be detected by special evoked response detection circuitry. The evoked response is the intracardiac atrial or ventricular depolarization that is observed as the P-wave or R-wave, respectively, on the surface ECG. Detection of an evoked response indicates electrical activation of the respective cardiac tissue by the stimulating pulse. The depolarization of the heart tissue in response to the heart's natural pacemaking function is referred to as an “intrinsic response”.
Through sampling and signal processing algorithms, the presence of an evoked response following a stimulation pulse is determined. A very short blanking period, or period of absolute refractoriness, following the stimulation pulse is applied to the evoked response sensing circuit immediately following the stimulation pulse to minimize or block out the stimulation pulse artifact. This blanking period is followed by a special evoked response detection window, commonly 15 to 60 ms in duration, wherein the evoked response sensing circuit looks for an evoked response. For example, if a stimulation pulse is applied to the ventricle, an R-wave sensed by a special evoked response detection circuit of the pacemaker immediately following application of the ventricular stimulation pulse evidences capture of the ventricles.
If no evoked response is detected, a high-energy back-up stimulation pulse is delivered to the heart very shortly after the primary ineffective stimulus, typically within 60-100 ms of the primary pulse, in order to maintain the desired heart rate. If the loss of capture is sustained for more than one cardiac cycle, an automatic threshold test may be invoked in order to re-determine the minimum pulse energy required to capture the heart. Threshold tests may also be performed on a periodic basis, for example daily or weekly. An exemplary automatic threshold determination procedure is performed by first increasing the stimulation pulse output level to a relatively high predetermined testing level at which capture is certain to occur. Thereafter, the output level is progressively decremented until capture is lost. The stimulation pulse energy is then set to a level safely above the lowest output level at which capture was attained. Thus, reliable capture verification is of utmost importance in proper determination of the threshold.
One signal that interferes with the detection of an evoked response, and potentially the most difficult for which to compensate because it is usually present in varying degrees, is lead polarization. A lead-tissue interface is that point at which an electrode of the pacemaker lead contacts the cardiac tissue. Lead polarization is commonly caused by electrochemical reactions that occur at the lead-tissue interface due to application of an electrical stimulation pulse across the interface. If the evoked response is sensed through the same lead electrodes through which the stimulation pulses are delivered, the resulting polarization signal, also referred to as an “afterpotential”, formed at the electrode can corrupt the evoked response signal that is sensed by the sensing circuits. This undesirable situation occurs often because the polarization signal can be three or more orders of magnitude greater than the evoked response. Furthermore, the lead polarization signal is not easily characterized; it is a complex function of the lead materials, lead geometry, tissue impedance, stimulation energy and other variables.
In order to verify that an evoked response is readily recognized during automatic capture verification or threshold testing, calibration methods are employed for measuring a characteristic of the post-stimulation signal, such as peak amplitude, slope, o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cardiac stimulation device and method for storing diagnostic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cardiac stimulation device and method for storing diagnostic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cardiac stimulation device and method for storing diagnostic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3147411

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.