Cardiac rhythm management system with defibrillation...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S005000

Reexamination Certificate

active

06751502

ABSTRACT:

TECHNICAL FIELD
The present system relates generally to cardiac rhythm management systems and particularly, but not by way of limitation, to a system providing, among other things, defibrillation threshold prediction.
BACKGROUND
When functioning properly, the human heart maintains its own intrinsic rhythm, and is capable of pumping adequate blood throughout the body's circulatory system. However, some people have irregular cardiac rhythms, referred to as cardiac arrhythmias. Such arrhythmias result in diminished blood circulation. One mode of treating cardiac arrhythmias uses drug therapy. Drugs are often effective at restoring normal heart rhythms. However, drug therapy is not always effective for treating arrhythmias of certain patients. For such patients, an alternative mode of treatment is needed. One such alternative mode of treatment includes the use of a cardiac rhythm management system. Such systems are often implanted in the patient and deliver therapy to the heart.
Cardiac rhythm management systems include, among other things, pacemakers, also referred to as pacers. Pacers deliver timed sequences of low energy electrical stimuli, called pace pulses, to the heart, such as via an intravascular leadwire or catheter (referred to as a “lead”) having one or more electrodes disposed in or about the heart. Heart contractions are initiated in response to such pace pulses (this is referred to as “capturing” the heart). By properly timing the delivery of pace pulses, the heart can be induced to contract in proper rhythm, greatly improving its efficiency as a pump. Pacers are often used to treat patients with bradyarrhythmias, that is, hearts that beat too slowly, or irregularly.
Cardiac rhythm management systems also include defibrillators that are capable of delivering higher energy electrical stimuli to the heart. Such defibrillators also include cardioverters, which synchronize the delivery of such stimuli to portions of sensed intrinsic heart activity signals. Defibrillators are often used to treat patients with tachyarrhythmias, that is, hearts that beat too quickly. Such too-fast heart rhythms also cause diminished blood circulation because the heart isn't allowed sufficient time to fill with blood before contracting to expel the blood. Such pumping by the heart is inefficient. A defibrillator is capable of delivering an high energy electrical stimulus that is sometimes referred to as a defibrillation countershock, also referred to simply as a “shock.” The countershock interrupts the tachyarrhythmia, allowing the heart to reestablish a normal rhythm for the efficient pumping of blood. In addition to pacers, cardiac rhythm management systems also include, among other things, pacer/defibrillators that combine the functions of pacers and defibrillators, drug delivery devices, and any other implantable or external systems or devices for diagnosing or treating cardiac arrhythmias.
One problem faced by cardiac rhythm management systems is the determination of the threshold energy required, for a particular defibrillation shock waveform, to reliably convert a tachyarrhythmia into a normal heart rhythm. Ventricular and atrial fibrillation are probabilistic phenomena that observe a dose-response relationship with respect to shock strength. The ventricular defibrillation threshold (VDFT) is the smallest amount of energy that can be delivered to the heart to reliably revert ventricular fibrillation to a normal rhythm. Similarly, the atrial defibrillation threshold (ADFT) is the threshold amount of energy that will terminate an atrial fibrillation. Such defibrillation thresholds vary from patient to patient, and may even vary within a patient depending on the placement of the electrodes used to deliver the therapy. In order to ensure the efficacy of such therapy and to maximize the longevity of the battery source of such therapy energy, the defibrillation thresholds must be determined so that the defibrillation energy can be safely set above the threshold value but not at so large of a value so as to waste energy and shorten the usable life of the implanted device.
One technique for determining the defibrillation threshold is to induce the targeted tachyarrhythmia (e.g., ventricular fibrillation), and then apply shocks of varying magnitude to determine the energy needed to convert the arrhythmia into a normal heart rhythm. However, this requires imposing the risks and discomfort associated with both the arrhythmia and the therapy. Electrical energy delivered to the heart has the potential to both cause myocardial injury and subject the patient to pain. Moreover, if defibrillation thresholds are being obtained in order to assist the physician in determining optimal lead placement, these disadvantages are compounded as the procedure is repeated for different potential lead placements.
Another technique for determining the defibrillation threshold, referred to as the “upper limit of vulnerability” technique, a patient in a state of normal heart rhythm is shocked during the vulnerable (T-wave) period of the cardiac cycle during which time the heart tissue is undergoing repolarization. Shocks of varying magnitude are applied until fibrillation is induced. Of course, after such fibrillation is induced, the patient must be again shocked in order to interrupt the arrhythmia and reestablish a normal heart rhythm. In this technique, the corresponding fibrillation-inducing shock magnitude is then related to a defibrillation threshold energy using a theoretical model. The upper limit of vulnerability technique also suffers from imposing the risks and discomfort associated with both the arrhythmia and the shock therapy. Moreover, because of the discomfort associated with the fibrillation and countershocks, the patient is typically sedated under general anesthesia, which itself has some additional risk and increased health care cost. For these and other reasons, there is a need to estimate defibrillation thresholds without relying on a defibrillation shock to induce or terminate an actual arrhythmia.
SUMMARY
The present system provides, among other things, a cardiac rhythm management system that predicts defibrillation thresholds without any need to apply defibrillation shocks or subjecting the patient to fibrillation. In one embodiment, the system provides a method that includes delivering a nondefibrillating and nonfibrillation-inducing test energy to a heart, detecting a resulting output signal based on the test energy and a heart characteristic, and estimating a defibrillation threshold, based on the output signal, for a portion of the heart to be defibrillated.
In one embodiment, the system includes first and second electrodes configured for association with a heart. A test energy module is coupled to the second electrode, for delivering a nondefibrillating and nonfibrillation-inducing test energy to the heart. A response signal module is coupled to the first and second electrodes for detecting responses to the test energy. A controller is coupled to the response signal module. The controller estimates a defibrillation threshold energy based on a predetermined desired defibrillation electric field at a distal portion of the heart tissue to be defibrillated and a distance from the second electrode to the distal portion of the heart tissue, and an indication of the electric field near the second electrode. Other aspects of the invention will be apparent on reading the following detailed description of the invention and viewing the drawings that form a part thereof.


REFERENCES:
patent: 5318597 (1994-06-01), Hauck et al.
patent: 5397336 (1995-03-01), Hirschberg et al.
patent: 5531770 (1996-07-01), Kroll et al.
patent: 5540724 (1996-07-01), Cox
patent: 5683431 (1997-11-01), Wang
patent: 5978705 (1999-11-01), KenKinght et al.
patent: 5999852 (1999-12-01), Elabbady et al.
patent: 6076015 (2000-06-01), Hartley et al.
patent: 6353761 (2002-03-01), Conley et al.
Bessho, R., et al., “Measurement of the upper limit of vulnerability during defibrillator implantation can substitute defibrillat

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cardiac rhythm management system with defibrillation... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cardiac rhythm management system with defibrillation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cardiac rhythm management system with defibrillation... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334335

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.