Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2001-05-23
2004-03-09
Evanisko, George R. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
Reexamination Certificate
active
06704598
ABSTRACT:
TECHNICAL FIELD
The present system relates generally to cardiac rhythm management systems and particularly, but not by way of limitation, to such a system selecting between multiple same-chamber electrodes for delivering cardiac therapy.
BACKGROUND
When functioning properly, the human heart maintains its own intrinsic rhythm based on physiologically-generated electrical impulses. It is capable of pumping adequate blood throughout the body's circulatory system. Each complete cycle of drawing blood into the heart and then expelling it is referred to as a cardiac cycle.
However, some people have abnormal cardiac rhythms, referred to as cardiac arrhythmias. Such arrhythmias result in diminished blood circulation. One mode of treating cardiac arrhythmias uses drug therapy. Drugs are often effective at restoring normal heart rhythms. However, drug therapy is not always effective for treating arrhythmias of certain patients. For such patients, an alternative mode of treatment is needed. One such alternative mode of treatment includes the use of a cardiac rhythm management system. Such systems are often implanted in the patient and deliver therapy to the heart.
Cardiac rhythm management systems include, among other things, pacemakers, also referred to as pacers. Pacers deliver timed sequences of low energy electrical stimuli, called pace pulses, to the heart, such as via an intravascular leadwire or catheter (referred to as a “lead”) having one or more electrodes disposed in or about the heart. Heart contractions are initiated in response to such pace pulses (this is referred to as “capturing” the heart). By properly timing the delivery of pace pulses, the heart can be induced to contract in proper rhythm, greatly improving its efficiency as a pump. Pacers are often used to treat patients with bradyarrhythmias, that is, hearts that beat too slowly, or irregularly. Such pacers may also coordinate atrial and ventricular contractions to improve pumping efficiency.
Cardiac rhythm management systems also include defibrillators that are capable of delivering higher energy electrical stimuli to the heart. Such defibrillators also include cardioverters, which synchronize the delivery of such stimuli to portions of sensed intrinsic heart activity signals. Defibrillators are often used to treat patients with tachyarrhythmias, that is, hearts that beat too quickly. Such too-fast heart rhythms also cause diminished blood circulation because the heart isn't allowed sufficient time to fill with blood before contracting to expel the blood. Such pumping by the heart is inefficient. A defibrillator is capable of delivering a high energy electrical stimulus that is sometimes referred to as a defibrillation countershock, also referred to simply as a “shock.” The countershock interrupts the tachyarrhythmia, allowing the heart to reestablish a normal rhythm for the efficient pumping of blood. In addition to pacers, cardiac rhythm management systems also include, among other things, pacer/defibrillators that combine the functions of pacers and defibrillators, drug delivery devices, and any other implantable or external systems or devices for diagnosing or treating cardiac arrhythmias.
One problem faced by physicians treating cardiovascular patients is the treatment of congestive heart failure (also referred to as “CHF”). Congestive heart failure, which can result from long-term hypertension, is a condition in which the muscle in the walls of at least one of the right and left sides of the heart deteriorates. By way of example, suppose the muscle in the walls of left side of the heart deteriorates. As a result, the left atrium and left ventricle become enlarged, and the heart muscle displays less contractility. This decreases cardiac output of blood through the circulatory system which, in turn, may result in an increased heart rate and less resting time between heartbeats. The heart consumes more energy and oxygen, and its condition typically worsens over a period of time.
In the above example, as the left side of the heart becomes enlarged, the intrinsic electrical heart signals that control heart rhythm may also be affected. Normally, such intrinsic signals originate in the sinoatrial (SA) node in the upper right atrium, traveling through electrical pathways in the atria and depolarizing the atrial heart tissue such that resulting contractions of the right and left atria are triggered. The intrinsic atrial heart signals are received by the atrioventricular (AV) node which, in turn, triggers a subsequent ventricular intrinsic heart signal that travels through specific electrical pathways in the ventricles and depolarizes the ventricular heart tissue such that resulting contractions of the right and left ventricles are triggered substantially simultaneously.
In the above example, where the left side of the heart has become enlarged due to congestive heart failure, however, the conduction system formed by the specific electrical pathways in the ventricle may be affected, as in the case of left bundle branch block (LBBB). As a result, ventricular intrinsic heart signals may travel through and depolarize the left side of the heart more slowly than in the right side of the heart. As a result, the left and right ventricles do not contract simultaneously, but rather, the left ventricle contracts after the right ventricle. This reduces the pumping efficiency of the heart. Moreover, in LBBB, for example, different regions within the left ventricle may not contract together in a coordinated fashion.
For these and other reasons, there is a need to provide cardiac rhythm management therapy that coordinates the timing of contractions of different sides of the heart, and/or alters the conduction of a depolarization through a single chamber of the heart to improve the efficiency of a contraction associated with that heart chamber.
SUMMARY
This document discusses a cardiac rhythm management system that selects one of multiple electrodes associated with a particular heart chamber. Subsequent contraction-evoking stimulation therapy is delivered from the selected electrode. Both methods and apparatuses are discussed.
In one embodiment, the electrode is selected based on a relative timing between detection of a same fiducial point of a cardiac depolarization at the multiple electrodes. The electrode that is last to detect the fiducial point is selected for subsequent delivery of contraction-evoking stimulations.
In another embodiment, a reference first chamber depolarization fiducial point is detected. A second chamber depolarization fiducial point is detected at each of multiple second chamber electrodes during the same cardiac cycle as the reference fiducial point. Time intervals are measured between the reference fiducial point and each of the second chamber fiducial points. The electrode corresponding to the longest such time interval is selected for subsequent delivery of contraction-evoking stimulations.
In a further embodiment, a first depolarization fiducial point is detected from the first heart chamber. During the same cardiac cycle, a second depolarization point is detected from a first electrode associated with the second heart chamber. A first time interval is measured between the first and second fiducial points. During a subsequent cardiac cycle, a third fiducial point, of the same nature as the first fiducial point, is detected from the first heart chamber. During the same cardiac cycle, a fourth fiducial point, of the same nature as the second fiducial point, is detected from a second electrode associated with the second heart chamber. A second time interval is measured between the third and fourth fiducial points. The electrode corresponding to the longer of the first and second time intervals is selected for subsequent delivery of contraction-evoking stimulations.
In yet a further embodiment, a reference fiducial point is detected, over one or more cardiac cycles, from one of a plurality of electrodes associated with a heart chamber. During the one or more cardiac cycles, corresponding fiducial
Ding Jiang
Kramer Andrew P.
Spinelli Julio C.
Cardiac Pacemakers Inc.
Evanisko George R.
Schwegman Lundberg Woessner & Kluth P.A.
LandOfFree
Cardiac rhythm management system selecting between multiple... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cardiac rhythm management system selecting between multiple..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cardiac rhythm management system selecting between multiple... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3271956