Cardiac lead with zone insulated electrodes

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S121000

Reexamination Certificate

active

06240320

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to cardiac stimulator leads, and more particularly to a cardiac stimulator lead having an electrode selectively coated with an insulating material to define small conductive regions.
2. Description of the Related Art
Conventional cardiac stimulator systems consist of a cardiac stimulator and an elongated flexible cardiac lead that is connected proximally to a header structure on the cardiac stimulator and is implanted distally at one or more sites within the heart requiring cardiac stimulation or sensing. The cardiac stimulator is normally a pacemaker, a cardioverter/defibrillator, a sensing instrument, or some combination of these devices.
At the time of implantation, the distal end of a cardiac lead is inserted through an incision in the chest and manipulated by the physician to the site requiring electrical stimulation with the aid of a flexible stylet that is removed prior to closure. At the site requiring electrical stimulation, the distal end of the lead is anchored to the endocardium by an active mechanism, such as a screw-in electrode tip, or alternatively, by a passive mechanism, such as one or more radially spaced tines that engage the endocardium. The proximal end of the lead is then connected to the cardiac stimulator and the incision is closed. The implantation route and site are usually imaged in real time by fluoroscopy to confirm proper manipulation and placement of the lead.
Most implantable cardiac stimulators include a circuit board enclosed within a sealed housing or can. The circuit board controls the delivery of electric pulses to the lead and may perform various other functions. Power is supplied by an internal dry cell battery or set of batteries. In some systems, the batteries may be recharged non-invasively and without excising the cardiac stimulator. However, most systems employ disposable batteries. When the disposable cells are depleted, the cardiac stimulator must be excised and replaced.
A conventional cardiac stimulator lead normally consists of an elongated flexible tubular, electrically insulating sleeve that is connected proximally to a connector that is adapted to couple to the header of a cardiac stimulator can, and distally to a tubular tip electrode. One or more ring-type electrodes may be secured to the sleeve at various positions along the length of the sleeve. The proximal end of the lead sleeve is connected to the connector by application of various biocompatible adhesives to various portions of the connector and the sleeve. The tip electrode ordinarily consists of a tubular structure that has an increased diameter portion that forms an annular shoulder against which the distal end of the lead sleeve is abutted. The exterior surface of the tubular structure is normally smooth as is the interior surface of the distal end of the lead sleeve. In multi-polar leads, one or more ring-type electrodes may be fitted over the sleeve.
To ensure that physical contact with the desired myocardial tissue is maintained after implantation, tip electrodes for most conventional leads are anchored to myocardial tissue by a fixation mechanism of one sort or another. In some leads, a corkscrew-like member projects from the tip electrode and penetrates the endocardium. In others, the electrode is fitted with one or more radially projecting tines that engage the normally irregular surface of the endocardium. Still others may employ both types of structures.
Most conventional tip electrodes serve at least two functions. In one aspect, tip electrodes provide a conducting member to convey electrical stimulation and/or sensing signals to and from myocardial tissue. In another aspect, most tip electrodes provide structure to accommodate either a directly incorporated fixation mechanism or a retrofitted fixation mechanism. Although conventional ring electrodes may be fitted with tines, most such electrodes serve primarily as signal conductors.
The design of cardiac stimulation systems involves a balancing of a number of competing design considerations. Some of these include can size, lead tip dimensions and power consumption. Can miniaturization has been an important design goal since the first implantable pacemakers were introduced over thirty years ago. Smaller cans yield better post-operative comfort and cosmetic results for the patient. However, can miniaturization has required downsizing in storage batteries, which has, in turn, placed a premium on power consumption. Power consumption is of great importance because for a given level of power consumption, smaller batteries generally translate into shorter cardiac stimulator life spans and more frequent surgical procedures for the patient.
Some of the limitations associated with diminishing battery size have been offset by advances in dry cell chemistry. In addition, advances in pulse generation circuitry have dramatically increased the efficiency of power consumption. For example, many cardiac stimulators incorporate circuitry that automatically tailors pulse generation to the physiological demands of the patient.
However, despite advances in battery chemistry and circuitry, power consumption efficiency is still frequently limited by conventional lead electrode design. Most conventional lead electrodes operate as relatively low impedance, and thus, high current drawing devices. The low impedance levels are primarily a function of the relatively large conducting surface areas that these devices present to myocardial tissue. As noted above, the size of conventional lead electrodes is dictated in large part by mechanical considerations, such as the facilitation of fixation mechanisms. Furthermore, a certain degree of bluntness in a tip electrode is desirable to reduce the risk of myocardial perforation and micro-dislodgement, and to facilitate capture of the lead tip by post-implant developing fibrous tissue. Similarly, miniaturization of ring-type electrodes is generally limited by the size of the insulating lead sleeve and by the prevailing mechanical systems used to secure such ring-type electrodes to the lead sleeve.
As a result of these mechanical design considerations, current is often drawn by conventional low impedance electrodes at higher rates than necessary for appropriate stimulation. Some improvement in current drain may be realized by lowering the voltage output of the pulse generator. However, this technique is not possible in patients who require a particular threshold voltage for successful stimulation that is above the contemplated lowered output voltage. Thus, conventional lead electrode designs may represent an impediment to extended battery life.
In one conventional lead design, the distal end of the lead is provided with a distally projecting, small diameter circular electrode that has the potential to provide enhanced pacing impedance. However, this design may be prone to micro-dislodgment. Since the lead is provided with a single small conducting surface on the distal end of the lead, normal heart motion may cause the small conducting surface to momentarily lose contact with or micro-dislodge from myocardial tissue and disrupt the flow of pacing pulses.
The present invention is directed to overcoming or reducing the effects of one or more of the foregoing disadvantages.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, a cardiac lead electrode is provided. The lead includes an electrode member and a coating applied to the electrode member. The coating is composed of an electrically insulating material and covers a first portion of the exterior of the electrode member while leaving a preselected second portion thereof exposed.
In accordance with another aspect of the present invention, a cardiac stimulator lead is provided. The cardiac stimulator lead includes a conductor wire that has an electrically insulating coating applied thereto and an electrode member coupled to the conductor wire. The electrode member has a coating applied thereto. The coating is composed of an ele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cardiac lead with zone insulated electrodes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cardiac lead with zone insulated electrodes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cardiac lead with zone insulated electrodes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2543724

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.