Cardiac catheter imaging system

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

10256188

ABSTRACT:
A device for measuring parameters of human tissue includes a multielectrode catheter for taking multiple measurements of the electrical characteristics of the human tissue, a concentric tube catheter located inside the multielectrode catheter, for providing structural support to the multi-electrode catheter and for serving as a conduit for advancing or withdrawing the multielectrode catheter over its surface; and an imaging catheter located inside the concentric tube catheter for taking multiple measurements of anatomical characteristics of the human tissue.

REFERENCES:
patent: 4649924 (1987-03-01), Taccardi
patent: 5409000 (1995-04-01), Imran
patent: 5450846 (1995-09-01), Goldreyer
patent: 5558093 (1996-09-01), Pomeranz
patent: 5699805 (1997-12-01), Seward et al.
patent: 5860974 (1999-01-01), Abele
patent: 5908445 (1999-06-01), Whayne et al.
patent: 6078831 (2000-06-01), Belef et al.
patent: 6839588 (2005-01-01), Rudy
patent: 6892091 (2005-05-01), Ben-Haim et al.
patent: 2001/0000791 (2001-05-01), Suorsa et al.
patent: 2002/0107515 (2002-08-01), Edwards et al.
Definition of “measure” from The American Heritage Dictionary, Second College Edition (1982).
Rao, et al., A Novel Electrical-Anatomical Imaging Catheter that Combines Noncontact Mapping and Intracardiac Echocardiography, Supplement to Circulation Journal of the American Heart Association, Abstracts from Scientific Sessions 2001, vol. 104, No. 17, Oct. 23, 2001, p. 2564.
Benjamin EJ, Wolf PA, Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 1998;98:946-952.
Zipes DP and Wellens HJJ. Sudden cardiac death. Circulation 1998;98:2334-2351.
The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 1989;321:406-412.
The ESVEM Investigators. Determinants of predicted efficacy of antiarrhythmic drugs in the electrophysiologic study versus electrocardiographic monitoring trial. Circulation 1993;87:323-329.
Jackman WM, Beckman KJ, McClelland JH, Wang X, Friday KJ, Roman CA, Moulton KP, Twidale N, Hazlitt A, Prior MI, Oren J, Overholt ED, Lazzarra R. Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency catheter ablation of slow-pathway conduction. N Engl J Med 1992;327:313-318.
Calkins H, Yong P, Miller JM, Olshansky B, Carlson M, Saul P, Huang SKS, Liem B, Klein LS, Moser SA, Bloch DA, Gillette P, Prystowsky E, for the Atakr Multicenter Investigators Group. Catheter ablation of accessory pathways, atrioventricular nodal reentrant tachycardia, and the atrioventricular junction: final results of a prospective, multicenter clinical trail. Circulation 1999;99:262-270.
Papageorgiou P, Anselme F, Kirchlof CJHJ, Monahan K, Rasmussen CAF, Epstein LM, Josephson ME. Coronary sinus pacing prevents induction of atrial fibrillation. Circulation 1997;96:1893-1898.
Moss AJ, Hall J, Cannom DS, Daubert JP, Higgins SL, Klein H, Levine JL, Saksena S, Waldo AL, Wilber D, Brown MW, Heo M, for the Multicenter Automatic Defibrillator Implantation Trial Investigators. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 1996;335:1933-40.
Zhu WX, Maloney JD, Pinski S, Nitta J, Fitzgerald DM, Trohman RG, Khoury DS, Saliba W, Belco KM, Rizo-Patron C, Simmons TW. Efficacy and safety of radiofrequency catheter ablation of symptomatic ventricular ectopy. J Am Coll Cardiol 1995;26:843-849.
Waldo AL, Vitikainen KJ, Hoffman BF. The sequence of retrograde atrial activation in the canine heart. Circ Res 1975;37:156-163.
Walcott GP, Reek S, Klein HU, Smith WM, Ideker RE. Cardiac mapping systems and their use in treating tachyarrhythmias. In Singer I, Barold SS, and Camm AJ (Eds): Nonpharmacological Therapy of Arrhythmias for the 21st Century: The State of the Art. Armonk, NY: Futura Publishing Co, 1998, pp. 591-606 (Missing pp. 592-606).
Chen PS, Moser Km, Dembitsky WP, Auger WR, Daily PO, Calisi CM, Jamieson SW, Feld CK. Epicardial activation and repolarization patterns in patients with right ventricular hypertropy. Circulation 1991;83:104-118.
Konings KTS, Smeets JLRM, Penn OC, Wellens HJJ, Allessie MA. Configuration of unpolar atrial electrograms during electrical induced atrial fibrillation in humans. Circulation 1997;95:1231-1241.
Josephsen ME, Horowitz LN, Spielman SR, Waxman HL, Greespan AM. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am J Cardiol 1982;29:207-220.
Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 1997;95:1611-1622.
De Groot, N. M.S., Bootsma M, Van Der Velde ET, Schalij MJ. Three-dimensional catheter positioning during radiofrequency ablation in patients: first application of a real-time position management system. J Cardiovasc Electrophysiol 2000;11:1183-1192.
Wittkampf FHM, Wever EFD, Derksen R, Wilde AAM, Ramanna H, Hauer RNW, Robles de Medlina EO. LocaLisa. New technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation 1999;99:1312-1317.
Jenkins KJ, Walsh EP, Colan SD, Bergau DM, Saul JP, Lock JE. Multipolar endocardial mapping of the right atrium during cardiac catheterization: description of a new technique. J Am Coll Cardial 1993;22:1105-1110.
Eldar M, Fitzpatrick AP, Ohad D, Smith MF, Hsu S, Whayne JG, Vered Z, Rotstein Z, Kordis T, Swanson DK, Chin M, Scheinman MM, Lesh MD, Greenspon AJ. Percutaneous multielectrode endocardial mapping during ventricular tachycardia in the swine model. Circulation 1996;94:1125-1130.
Taccardi B, Arisi G, Macchi E, Baruffi S, Spaggiari S. A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation 1987;75:272-281.
Derfus DL, Pilkington TC, Simpson EW, Ideker RE. A comparison of measured and calculated intracavitary potentials for electrical stimuli in the exposed dog heart. IEEE Trans Biomed Eng 1992;39:1192-1206.
Schilling RJ, Peters NS, Davies DW. Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: Comparison of contact and reconstructed electrograms during sinus rhythm. Circulation 1998;98:887-898.
Barr RC, Spach MS. Inverse calculations of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Cir Res 1978;42:661-675.
Colli-Franzone P, Guerri L, Tentoni S, Viganotti C, Baruffi S, Spaggiari S, Taccardi A mathematical procedure for solving the inverse problem of electrocardiography: analysis of the time-space accuracy from in vitro experimental data. Math Biosci 1985;77:353-396.
Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation 1970;41:899-912.
Spach MS and Barr RC. Ventricular intamural and epicardial potential distribution during ventricular activation and repolarization in the intact heart. Circ Res 1975;37:243-257.
Messinger-Rapport BJ, Rudy Y. Regularization of the inverse problem in electrocardiograpy: a model study. Math Biosci 1988;89:79-118.
Messinger-Rapport BJ, Rudy Y. Computational issues of importance to the inverse recovery of epicardial potentials in a realistic heart-torso geometry. Math Biosci 1989;97:85-120.
Tikhonov AN, Arsenin VY. Solutions of III-Posed Problems. Washington: V. H. Winston & Sons, 1977, pp. 27-94 (Missing pp. 28-94).
Colli-Franzone P, Guerri L, Taccardi B, Viganotti C. Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data. Calcolo 1985;22:91-186.
Messinger-Rapport BJ, Rudy Y. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm. Circ Res 1990;66:1023-1039.
Gulrajani RM. The forward and inverse problems of ele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cardiac catheter imaging system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cardiac catheter imaging system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cardiac catheter imaging system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3724202

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.