Card security system

Registers – Systems controlled by data bearing records – Credit or identification card systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S382000

Reexamination Certificate

active

06328209

ABSTRACT:

BACKGROUND OF THE INVENTION
a) Field of the Invention
The present invention relates to a card security system using an identification card such as a credit card, an ID card or a driver's license. Further, the present invention relates to a method of enhancing security, a card reading apparatus, a card issuing apparatus and a hologram reader appropriate for such card security system.
b) Description of Related Art
In the early days of credit cards, banks provided cards indiscriminately, and control of blank cards was lax. Consequently, there was an ample supply of blank credit cards with the banks' names on them which could be used by criminals. Additionally, the lack of security printing of these cards made it easy for criminals to manufacture their own counterfeit cards whenever a supply of genuine cards was not available, and this “business” enriched many.
As the losses to the banks escalated, the banks more and more took measures to tighten the issuance of cards to approved customers, and also to increase the security of the design and manufacturing of the card itself. A number of measures were considered, but it was the introduction of a piece of foil bearing a holographically generated diffraction grating on the front of the card that virtually eliminated what was then the major source of cards for criminals—the counterfeited card. Unfortunately criminals are still left with at least three other major opportunities for fraud.
The first is the use of a stolen or lost card—which can be used until the holder reports it lost or stolen. The second was the use of a “good” account number re-encoded onto an otherwise outdated or lost, but previously valid card. The third is using a valid number (without the card) or a “white” card with magnetic stripe for use in automatic teller machines (ATM) or telephones where the card is not authenticated by a person, but only machine read. Actually, there is a fourth type of fraud about to reassert itself. The Master Card and Visa holograms have been used in the field for eight years. Soon there will be sufficient technology available for someone, somewhere to begin creating acceptable counterfeits. It is again time for the security printer to remain the proverbial one step ahead of the counterfeiter.
Technology can do little at present with respect to fraud of the first type. However, the present invention can effectively enhance security against fraud of the second, third and fourth types.
In a typical credit card transaction a sales clerk looks at the card and, if it appears valid, swipes the card in a magnetic reader, such as that disclosed by Chang et al. (U.S. Pat. No. 4,788,420) and incorporated herein by reference. The reader sends the account access identification number back to the authenticating source. If the source responds with approval, a transaction takes place. Eventually the legitimate card holder receives a bill which he/she pays or disavows. If properly disavowed, eventually the bank will have to absorb the loss since the magnetic reader had provided an authentic account access identification number which was accordingly approved. This is what happens in fraud of the first and second types.
The account access identification number written or encoded into the magnetic stripe is very much like the license plate number of a car. There is not a great deal of information on the license plate, nor is there a great deal of information in the magnetic stripe. The really valuable information, the payment history, the maiden name of the customer's mother, etc. are all stored down stream in the bank's information system. Only the credit available is normally reached by inquiry from the field.
Thus the situation is similar to the automobile's license plate—or registration; not too much information is stored in the field, just a method of getting to the information stored in the Department of Motor Vehicle files.
Access to only a small part of the bank's information on a customer (current validity of the card, available credit) is made available to the merchant through the electronic network which is used every time a credit card is swiped or magnetically read by the equipment currently available to read and report a transaction.
While the supply of generally acceptable credit cards for illicit purposes is imperfect and small, it is still relatively easy for the determined criminal to acquire a physically genuine but outdated credit card and alter the magnetic information and also re-emboss the expiration date and names on the front. While the ironing out of the original name and re-embossing is not perfect and, upon close inspection can be determined by those familiar with such fraud, these mundane attempts to defraud are generally successful. Then, when the card is swiped, a credit worthy account is identified and the swipe machine is given a green signal to validate or authenticate the transaction.
In some cases, especially at an ATM the only thing the criminal needs is a blank card with a magnetic tape encoded with a valid magnetically readable account access identification number and the unsuspecting victim's personal identification number (PIN) number. There are also a number of places, telephone, kiosks and supermarkets where PIN numbers are not required and clerk verification of the actual card is not done.
There has been a long and valiant attempt to make the magnetic encoding secure and resistant to alteration. Watermark tape by Thorne-EMI was one such. The development of high oersted tapes by 3M Company and others is another. Both provide some limited enhancement of security in their own ways. But neither has found acceptance in the industry because of the changes to existing procedures each might require.
The Thorne-EMI approach magnetically incorporates a sequential number into the tape while the tape is in the manufacturing process; this can then be read by the magnetic reader. The idea and process was thwarted by the difficulty of manufacturing the tape and by keeping sequential numbering accounted for; and it was generally deemed to be too expensive.
The 3M solution is a solution only to the extent that high coercivity tape requires more powerful encoding equipment than that used to encode
300
oersted tape (the industry standard). To the extent such equipment is harder to obtain, security is at least marginly enhanced. The industry may yet move to high coercivity tape. It would require all Service Bureaus and Banks with their own issuing departments to buy new encoding equipment at least to phase it in over time. This is a heavy investment of equipment by a group with no great incentive to do so and there is no indication such high coercivity encoding equipment would not be available to the criminal element. As stated this is, at best, a marginal move.
In all cases, whatever has been placed within the magnetic reading environment is obtainable to anyone with rudimentary equipment to read the magnetic encoding. Even if the numbers make no sense—being in code or encrypted—it is still easy to replicate the coded or encrypted number. What has been lacking in the past, and which this invention solves, is another—unreadable by conventional equipment—level of numbers which can be incorporated into the magnetic stripe in a cost effective way.
All other efforts including the algorithms of magnetic numbering are vulnerable no matter how complex and sophisticated because it is the entire magnetic number, original or forged, which is read by the magnetic reader which relays that number down the communication line to the bank for verification.
An approach to solving the problem already exists with the “batch” number which is printed on most credit cards by the card manufacturer. Most often these are four digit numbers found on all American Express Cards and now upon some Master Cards. If there is some reason to suspect a transaction is fraudulent, then the validity of the card can sometimes be tied into the actual card by telephoning the issuing bank to determine if the batch number is a) genuin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Card security system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Card security system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Card security system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2582705

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.