Card connector having strengthened ejection mechanism

Electrical connectors – With coupling separator – Nonconducting pusher

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S160000

Reexamination Certificate

active

06796816

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the art of electrical connectors, and more particularly, to a card connector for integrated circuit (IC) cards having a strengthened ejection mechanism.
2. Description of the Prior Art
Compact flash card connectors have become popular in electronic equipment applications such as digital cameras and laptop and portable computers. Usually an ejection mechanism is equipped with the card connector. This is because the mating compact flash card is received inside a simple insertion slot in an enclosure of the electronic equipment. Once the mating card is engaged in the slot, it is hard to reach and pull out manually. The ejection mechanism can facilitate removal of the mating card. One kind of card connector is disclosed in “Technology Analysis of Card Connector Performance” (Connector Specifier, February 2001, pp. 48-52). Conventionally, the ejection mechanism of a card connector comprises a push button held by a frame of the ejection mechanism and movable along a card insertion/removal direction, and an eject lever rotatably supported by the card connector. One end of the eject lever is engaged with a distal end of the push button. To remove a card engaged in the card connector, the push button is pressed, the eject lever rotates, and a claw of the eject lever pushes a front rim of the card and forces the card to move outwardly. Thereupon, the card can be easily pulled out manually. However, the proximal end of the push button usually projects outside of the enclosure of the electronic equipment. The button may be accidental pushed, and an inserted IC card may be unexpectedly ejected. In addition, the push button is liable to be damaged or even broken by accidental impact or by excessive pushing force being applied by a user. Examples of the above-described ejection mechanisms are found in Taiwan Patent Publication Nos. 325154 and 314665.
A different kind of ejection mechanism for a card connector is disclosed in Taiwan Patent No. 275121, U.S. Pat. No. 5,655,918 and China Patent No. 99227777.9. Such ejection mechanism comprises an eject lever, a connecting lever releasably linked to a push button, and a heart-shaped cam mechanism holding the push button in a preset inmost position by means of a control pin. At the inmost position, the push button is almost received within the enclosure of the electronic equipment. The ejection mechanism also defines an outmost position of the push button, in which the push button projects substantially out from the enclosure. The ejection mechanism selectively transfers pushing force applied to the push button to the connecting lever, depending on which position the push button is located at the time the pushing force is applied. That is, when an inserted card is to be ejected, the push button is initially at the inmost position. The push button is pushed a first time, and moves to the outmost position by being guided by the heart-shaped cam mechanism. Simultaneously, the connecting lever engages with the eject lever. Then the push button is pushed a second time, and moves to the inmost position by being guided by the heart-shaped cam mechanism. Simultaneously, the pushing force applied is transferred via the control pin to the connecting lever, and the connecting lever drives the eject lever to push the card outward. The card is then easily withdrawn by hand from the enclosure.
This mechanism permits the push button to stay at the inmost position during normal use and operation of the electronic equipment, whether or not a mating card is received in the card connector. When the mating card is received in the card connector, electrical connection therebetween is secure and reliable, due to the safe location of the push button at the inmost position. However, when the control pin slides in the heart-shaped cam mechanism, it rubs along a wall of the cam mechanism at the sliding channel. Generally, the control pin is made of metallic material, and the cam mechanism is made of plastic material. The control pin is prone to wear out the cam mechanism after repeated use. This can adversely affect reliable operation of the ejection mechanism, and can even lead to breakage of the cam mechanism.
A new compact flash card connector which overcomes the above-mentioned problems is desired.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a card connector having a strengthened ejection mechanism that minimizes friction wear.
Another object of the present invention is to provide a strengthened ejection mechanism that is latchably mounted to a card connector thereby facilitating assembly of the connector.
To achieve the above objects, a card connector comprises an insulative header, a multiplicity of terminals retained in the header, and an ejection mechanism latchably mounted on the header. The header comprises a pair of arms, and defines a multiplicity of terminal-receiving passageways receiving the terminals therein. The ejection mechanism comprises a driving device, and a swing arm movably connected to the driving device. The driving device comprises a combined portion latchably mounted on one arm of the header. A heart-shaped cam groove is defined in an inner face of a top wall of the combined portion. The groove has a plurality of cam surfaces formed thereat, the surfaces defining different groove depths and having different slopes. A metallic piece is provided on side walls of the combined portion at the groove, corresponding to two of the surfaces. The metallic piece enhances a strength of said side walls, and protects said side walls from friction wear when the ejection mechanism ejects an integrated circuit (IC) card out from the card connector.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:


REFERENCES:
patent: 5551853 (1996-09-01), Cherry et al.
patent: 6082650 (2000-07-01), Okada et al.
patent: 6142801 (2000-11-01), Koseki et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Card connector having strengthened ejection mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Card connector having strengthened ejection mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Card connector having strengthened ejection mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3236952

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.