Electrical connectors – With coupling movement-actuating means or retaining means in... – For dual inline package
Reexamination Certificate
2002-02-07
2003-12-16
Bradley, P. Austin (Department: 2833)
Electrical connectors
With coupling movement-actuating means or retaining means in...
For dual inline package
C439S631000
Reexamination Certificate
active
06663408
ABSTRACT:
This application is based on Japanese Patent Application Nos. 2001-032753 filed Feb. 8, 2001 and 2001-032754 filed Feb. 8, 2001, the contents of which are incorporated hereinto by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a card connector, more particularly to a card connector capable of being built into various electronic apparatuses such as PDAs (personal digital assistants), cellular phones, telephones, portable audio products and cameras.
2. Description of the Related Art
Known IC cards have memory and/or an IC for serving as a control circuit. By loading such an IC card into electronic apparatuses, such as a cellular phone, a telephone, a PDA, and a digital camera, functions of these electronic apparatuses can be enhanced. Examples of such IC cards include memory cards such as Subscriber Identity Module Card® (SIM card), Multi Media Card® (MMC), Smart Media®, Secure Digital Card® (SD card), Memory Stick®, and Compact Flash Card®.
Card connectors allow these IC cards to removably connect with electronic apparatuses. The card connector is built into the electronic apparatus. The card connector generally has a connector body including a card slot and a plurality of metal contact terminals. Each of contact terminals of the card connector comes to contact with a corresponding contact pad arranged on a front face or a rear face of the IC card when the IC card is inserted in the card slot. A contact between contact terminals of the card connector and contact pads of the IC card allows electrical connection between the electric apparatus and the IC card. That is, the contact pads of the IC card include power-source pads to be connected to a power source and a plurality of signal pads for transmitting and receiving various signals. These contact pads are respectively connected to a power source circuit or various signal processing circuits of the electronic apparatus through a plurality of contact terminals of the card connector.
For example, if a certain SIM card is connected to a cellular phone, the cellular phone serves as exclusive one for a proprietor of SIM card. Therefore, if different SIM cards are allowed to connect to one cellular phone, the cellular phone can be used independently by plural users on a shared basis.
The card connector for a SIM card is disclosed, for example, in Japanese Patent Application Laid-Open No. 9-185973 (1997). This card connector has a base (connector body) made of a resin, and a cover which is hinged on the base and has a card slot. The SIM card can be slidably inserted in the cord slot of the cover. The base has contact terminals which are arranged thereon and can contact with the contact pads of SIM card. Further, this card connector has a lock mechanism for keeping the cover in a closed state. The lock mechanism includes locking protrusions extending from both sides of the cover and elastic pieces disposed on the base. The elastic pieces of the base have holes into which the locking protrusions of the cover can respectively fit.
However, in the above-mentioned conventional card connector, since the IC card is inserted in the card slot of the cover, the weight of the cover side is increased. Thus, the card is liable to slip from the card slot of the cover. Further, in the above-mentioned conventional lock mechanism, the locking protrusions are disposed at the both sides of the cover and the elastic pieces are disposed on the base so as to mate with the corresponding locking protrusion. Because of this configuration, thickness and width of the base and the cover increase around the locking protrusions and the elastic pieces, and consequently both side portions of the card connector become bulky. Moreover, in the conventional card connector, since the cover and the base are locked to each other at the sides of these members, locking strength is not sufficient and hence the cover may be opened accidentally.
Furthermore, in the prior art, in order to open the cover, the user must hold the cover by grasping it with fingers and then pull it up in a predetermined direction so that an engagement between the locking protrusions and the elastic pieces is released. However, this operation makes an insertion and a removal of the IC card cumbersome. Further, in the prior art, since the cover is still approaching the connector body after the locking between the base and the cover has been released, it is not easy to pivotally move the cover. Moreover, when releasing the engagement between the locking protrusions and the elastic pieces, the locking protrusions may be permanently deformed or be broken. The permanent deformation or the break of the locking protrusions result in an incompleteness of the locking. Further, in the prior art, since elastic pieces engaging with the locking protrusion are formed together with the base in one piece, the elastic pieces are liable to be permanently deformed or be broken and the structure of the base becomes complex.
SUMMARY OF THE INVENTION
It is an object of the present invention to solve the above-described problems. The present invention provides a simple and compact hinged card connector which can accommodate an IC card securely and facilitate locking a cover to the card connector and releasing the lock.
One aspect of the present invention relates to a card connector for an IC card comprising a connector body, a card slot, a pivotal pin, a cover, and a locking portion.
The card slot is formed in the connector body and has contact terminals adapted to respectively contact with a corresponding contact pad of the IC card when the IC card is positioned therein. The pivotal pin is supported by the connector body. The cover is pivotally supported by the pivotal pin at a first (proximal) edge portion thereof. The cover has a hook at a second (distal) edge portion opposite to the first edge portion. The cover can be pivotally moved about the pivotal pin to cover and expose the card slot and moved with respect to the connector body along the pivotal pin in a closed state. The locking portion is disposed in the connector body. The locking portion can engage with the hook of the cover when the cover is moved along the pivotal pin in the closed state, thereby restricting a pivotal movement of the cover for exposing the card slot or the card.
According to this card connector, the cover can be easily locked to the connector body only by moving the cover along the pivotal pin. Also, the lock can be easily released only by moving the cover along the pivotal pin. Moreover, since the card is accommodated in the connector body rather than the cover, the card connector securely holds the card without the cards slipping from the card slot. Furthermore, the hook is disposed not at the side portions of the cover but at the second edge portion, (i.e., at a distal edge portion) of the cover so that the side portions of the card connector do not become bulky. Therefore, the entire size of the card connector can be compact and the locking strength between the cover and the connector body can be increased.
Preferably, the hook is extended from the second edge potion of the cover and folded to define an engagement portion. The locking portion of the connector body is inserted into the engagement portion of the hook when the cover is moved along the pivotal pin in the closed state. With this configuration, the locking strength between the cover and the connector body can easily be increased.
Preferably, the card connector includes a protrusion extended from the first edge portion of the cover and a stopper portion disposed in the connector body. The stopper portion abuts against the protrusion of the cover to restrict a movement of the cover along the pivotal pin except when the cover is closed. Moreover, the card connector preferably includes a positioning portion formed in the connector body. The positioning portion provides a space in which the protrusion moves when the cover is positioned at an opening position at which the cover can be opened to expose the card slot or the card. The
Bradley P. Austin
Hammond Briggitte R.
Yamaichi Electronics Co. Ltd.
LandOfFree
Card connector does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Card connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Card connector will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3117443