Card assembly apparatus, card inspecting apparatus and card...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Article handling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S223000, C209S573000

Reexamination Certificate

active

06574528

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a card assembly apparatus for assembling PC cards and the like.
The present invention also relates to a card inspecting apparatus for conducting, for example, an electrical inspection of PC cards and, more particularly, to a card inspecting apparatus capable of performing steps of an electrical inspection from a card supplying step up to an inspection/ejection step.
Further, the present invention relates to a card magazine capable of housing a plurality of PC cards which is used for, for example, a card assembly apparatus for assembling PC cards and the like and a card inspecting apparatus for conducting an electrical test on assembled PC cards.
2. Description of the Related Art
Recently, there is increasing use of compact cards, including PC cards in compliance with PCMCIA (Personal Computer Memory Card International Association), which provide predetermined functions when inserted into personal computers (hereinafter abbreviated as “PCs”), audio and video apparatuses. Other compact cards other than PC cards include Compact Flashes (registered trademark of Sun Disk Corporation) and MMCs (Multimedia Cards) proposed by Multimedia Card Association. Those cards are used as storage devices having solid-state memories or data communication devices for modems, LANs (local area networks) and the like.
For example, card assembly apparatuses like that disclosed in Japanese Patent Laid-Open (Kokai) No. H5-208577 have been used for steps of assembling such cards. In the disclosed card assembly apparatus, automation is achieved in steps of pressing, heating and cooling memory cards which have been manually tentatively bonded. A heat block is heated up in advance, and a pressing cylinder is elevated to press and heat memory cards between the heat block and itself. This melts bonding sheets which are thereafter thermally set to achieve final bonding. There is also provided a pressure adjuster which absorbs variations of the thickness of memory cards to apply a uniform pressure to a plurality of memory cards.
However, the above-described conventional card assembly apparatus automates only a part of card assembly steps and, for example, no mechanism is provided to apply reinforcement resin for filling a part of a gap between a substrate and a shield cover of a card. Therefore, the application of reinforcement resin is still troublesome in that an operator must manually apply the reinforcement resin to the substrate or shield cover of each card.
Further, since the conventional card assembly apparatus includes no mechanism for inserting an insulation sheet between a substrate and a shield cover, the insertion of an insulation sheet necessitates a manual step to be performed by an operator, which results in a problem in that the throughput of card assembly is reduced. Similarly, the insertion of a shield cover into a frame also relies on a manual operation because no mechanism is provided therefor, which is a factor that hinders improvement of yield of manufacture. Further, the operations of supplying card to be assembled to the assembly apparatus and collecting assembled cards also rely on operators. This results in a problem in that the need for operators' intervention results in a cost increase and in that an idle time of the card assembly apparatus required to rest or replace operators reduces the throughput of card assembly.
At the final step of assembly, such cards are subjected to an electrical inspection using a card inspecting apparatus to see whether predetermined functions properly work or not. Since such a card inspecting apparatus performs a predetermined electrical inspection with the cards to be inspected inserted in a connector for electrical connection, a card inspecting apparatus having a card inserting/removing device, for example, as disclosed in Japanese Patent Laid-Open (Kokai) No. H7-6220 is used. The disclosed card inspecting apparatus has a conveyor to transport manufactured memory cards sequentially. The conveyor holds manufactured memory cards on an upper surface thereof and feeds them in a predetermined direction to transport the memory cards to the card inserting/removing device.
A Memory card which has been transported to and stopped at the inserting/removing device by the conveyor is lifted up as a result of an upward movement of a table of a lift-up mechanism and is held at the same elevation as that of an eject connector. A contact piece of a pushing mechanism is driven for protrusion in the inserting direction of the memory card to be put into contact with an end face of the memory card, and the memory card is consequently pushed into the eject connector. When the electrical inspection of the memory card is completed, a button-pushing mechanism operates to push an eject button. As a result, the memory card is elastically projected from the eject connector by an urging mechanism provided in the eject connector.
In the above-described conventional card inspecting apparatus, however, memory cards must be manually placed on the conveyor one by one and must be manually picked up from the conveyor one by one again when the inspection is completed. This results in a problem in that the need for operators' intervention results in a cost increase and in that an idle time of the card assembly apparatus required to rest or replace operators reduces the throughput of card assembly.
The above-described card inspecting apparatus has another problem in that it takes a considerable time to perform an inspection because only one card can be inspected at a time.
Further, while so-called input/output cards (hereinafter called “I/O Cards”) such as modem cards, LAN cards, adapter cards for Smart Media, ISDN cards, ATA cards, and so on have a back connector to be connected to a telephone line, a LAN cable or the like in addition to a connector to be connected to a PC, the above-described conventional card inspecting apparatus does not accommodate any electrical inspection on the side of the back connector.
While the eject button of the above-described conventional card inspecting apparatus is pushed to remove a memory card from the eject connector when the electrical inspection is completed, the exterior of the eject button is formed using resin such as plastics which can be broken, and failure is likely to occur in the interior because of wear and the like. Further, since the interface connector of a memory card and the eject connector are mated with a considerably high mating force, the above-described eject button system has a problem in that a card may not be removed.
As described above, the operations of supplying cards to be assembled to the assembly apparatus and collecting assembled cards rely upon operators. Further, the supply and collection of memory cards to and from the card inspecting apparatus also rely upon operators. This results in a problem in that the need for operators' intervention results in a cost increase and in a reduction of the throughput of the card assembly and inspection.
One known way for solving the above-described problems is the use of a magazine for housing a plurality of cards and a mechanical mechanism for picking up cards from the magazine without operators' intervention to perform predetermined processes thereon. For example, Japanese Patent Laid-Open (Kokai) No. H5-46819 discloses a system in which cards are supplied from a magazine located at a card supply port of a card visual inspection apparatus. In this system, when a magazine becomes vacant as all cards therein are supplied, another magazine is moved in turn to the card supply port to start supply of cards therefrom. A card in the magazine is lifted up to an opening of the magazine with appropriate means, and air flows from nozzles blow lateral surfaces of the card to float the card. A picker provided with a vacuum absorption function at an end thereof is then moved into the vicinity of a top surface of the card to absorb and hold the card.
In the case of a conventional magazine as

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Card assembly apparatus, card inspecting apparatus and card... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Card assembly apparatus, card inspecting apparatus and card..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Card assembly apparatus, card inspecting apparatus and card... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3151070

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.