Carboxymethyl cellulose from thermotoga maritima

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S320100, C435S252300, C536S023200, C536S023700

Reexamination Certificate

active

06245547

ABSTRACT:

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production and isolation of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention has been putatively identified as an endoglucanase and in particular an enzyme having carboxymethyl cellulose activity, sometimes hereinafter referred to as “CMCase”.
Cellulose, a fibrous, tough, water-insoluble substance is found in the cell walls of plants, particularly, in stalks, stems, trunks and all the woody portions of plant tissues. Cellulose constitutes much of the mass of wood, and cotton is almost pure cellulose. Because cellulose is a linear, unbranched homopolysaccharide of 10,000 to 15,000 D-glucose units, it resembles amylose and the main chains of glycogen. But there is a very important difference; in cellulose, the glucose residues have the beta configuration, whereas in amylose, amylopectin and glycogen the glucose is in the alpha configuration. The glucose residues in cellulose are linked by (beta 1→4) glycosidic bonds. This difference gives cellulose and amylose very different 3-dimensional structures and physical properties.
Cellulose cannot be used by most animals as a source of stored fuel, because the (beta 1→4) linkages of cellulose are not hydrolyzed by alpha-amylases. Termites readily digest cellulose but only because their intestinal tract harbors a symbiotic microorganism,
trichonympha
, which secretes cellulose, an enzyme that hydrolyzes (beta 1→4) linkages between glucose units. The only vertebrates able to use cellulose as food are cattle and other ruminant animals (sheep, goats, camels and giraffes). The extra stomachs “rumens” of these animals teem with bacteria and protists that secrete cellulose.
The enzymatic hydrolysis of cellulose is considered to require the action of both endoglucanases (1,4-beta-D-glucan glucanohydrolase) and exoglucanases (1,4-beta-D-glucan cellobiohydrolase). A synergistic interaction of these enzymes is necessary for the complete hydrolysis of crystalline cellulose. (Caughlin, M. P., Genet. Eng. Rev., 3:39-109 (1985). For the complete degradation of cellulose (cellulose to glucose), &bgr;-glucosidase might be required if the “exo” enzyme does not release glucose. 1,4-&bgr;-d-Glucan glucohydrolase is another type of “exo” cellulose.
Thermophilic bacteria have received considerable attention as sources of highly active and thermostable cellulolytic and xylanlytic enzymes (Bronneomeier, K. and Staudenbauer, W. L., D. R. Woods (Ed.), The Clostridia and Biotechnology, Butterworth Publishers, Stoneham, Mass. (1993). Recently, the most extremely thermophilic organotrophic eubacteria presently known have been isolated and characterized. These bacteria, which belong to the genus Thermotoga, are fermentative microorganisms metabolizing a variety of carbohydrates (Huber, R. and Stetter, K. O., in Ballows, et al., (Ed.), the procaryotes, 2nd Ed., Springer-Verlaz, New York, pgs. 3809-3819 (1992)).
In Huber et al., 1986, Arch. Microbiol. 144:324-333, the isolation of the bacterium
Thermotoga maritima
is described.
T. maritima
is a eubacterium that is strictly anaerobic, rod-shaped, fermentative, hyperthermophilic, and grows between 55° C. and 90° C., with an optimum growth temperature of about 80° C. This eubacterium has been isolated from geothermally heated sea floors in Italy and the Azores.
T. maritima
cells have a sheath-like structure and monotrichous flagellation.
T. maritima
is classified in the eubacterium kingdom by virtue of having murein and fatty acid-containing lipids, diphtheria-toxin-resistant elongation factor 2, an RNA polymerase subunit pattern, and sensitivity to antibiotics.
The polynucleotide sequence and polypeptide encoded thereby of the present invention has been putatively identified as an endoglucanase having carboxymethyl cellulose activity.
In accordance with one aspect of the present invention, there is provided a novel enzyme, as well as active fragments, analogs and derivatives thereof.
In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules encoding an enzyme of the present invention including mRNAs, DNAs, cDNAs, genomic DNAs as well as active analogs and fragments of such enzymes.
In accordance with yet a further aspect of the present invention, there is provided a process for producing such polypeptide by recombinant techniques comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing a nucleic acid sequence encoding an enzyme of the present invention, under conditions promoting expression of said enzyme and subsequent recovery of said enzyme.
In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such enzyme, or polynucleotide encoding such enzyme for degradation of cellulose for the conversion of plant biomass into fuels and chemicals, may also be used in detergents, the textile industry, in animal feed, in waste treatment, and in the fruit juice/brewing industry for the clarification and extraction of juices.
In accordance with yet a further aspect of the present invention, there is also provided nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to a nucleic acid sequence of the present invention.
In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such enzymes, or polynucleotides encoding such enzymes, for in vitro purposes related to scientific research, for example, to generate probes for identifying similar sequences which might encode similar enzymes from other organisms by using certain regions, i.e., conserved sequence regions, of the nucleotide sequence.
These and other aspects of the present invention should be apparent to those skilled in the art from the teachings herein.
The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
FIGS. 1A-1C
are an illustration of the full-length DNA and corresponding deduced amino acid sequence of the enzyme of the present invention. Sequencing was performed using a 378 automated DNA sequencer (Applied Biosystems, Inc.).
The present invention provides a purified thermostable enzyme that catalyzes the hydrolysis of the beta 1,4 glycosidic bonds in cellulose to thereby degrade cellulose. The purified enzyme is a carboxymethyl cellulose from
T. maritima
which is a thermophilic eubacteria which grows in temperatures up to 90° C. The organism is strictly anaerobic, rod-shaped and fermentative, and grows between 55 and 90° C. (optimally at 80° C.) .
Thermotoga maritima
is a representative of the genus Thermotoga.
In a preferred embodiment, the CMCase enzyme of the present invention has a molecular weight of about 35 kilodaltons as measured by SDS-PAGE gel electrophoresis and an inferred molecular weight from the nucleotide sequence of the gene. This purified enzyme may be used to catalyze the enzymatic degradation of cellulose where desired.
The term “gene” means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).
A coding sequence is “operably linked to” another coding sequence when RNA polymerase will transcribe the two coding sequences into a single MRNA, which is then translated into a single polypeptide having amino acids derived from both coding sequences. The coding sequences need not be contiguous to one another so long as the expressed sequences ultimately process to produce the desired protein.
“Recombinant” enzymes refer to enzymes produced by recombinant DNA techniques; i.e., produced from cells transformed by an exogenous DNA construct encoding the desired enzyme. “Synthetic” enzymes are those prepared by ch

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Carboxymethyl cellulose from thermotoga maritima does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Carboxymethyl cellulose from thermotoga maritima, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carboxymethyl cellulose from thermotoga maritima will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2474583

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.