Gas and liquid contact apparatus – Fluid distribution – Valved
Reexamination Certificate
2002-10-21
2004-06-01
Bushey, Scott (Department: 1724)
Gas and liquid contact apparatus
Fluid distribution
Valved
C261S121100, C261SDIG007, C099S323100, C426S477000
Reexamination Certificate
active
06742772
ABSTRACT:
The present invention relates to a carbonating device for loading a liquid with a pressurized gas. Such carbonating devices usually serve to mix tap water or so-called still water with carbon dioxide or CO
2
. By using such a carbonating device, the arduous carrying of drinks crates can be significantly reduced in particular in areas in which the tap water is safe to drink. Suitable additives such as e.g. syrups are now available on the market, so that with the help of the carbonating device, the most varied non-alcoholic drinks can be prepared and mixed with carbon dioxide.
Carbonating devices generally have a filling device which can be connected sealed off to a vessel containing the liquid, the filling device having a filling valve and actuation elements for this purpose, with which the connection between the inside of the vessel and the pressurized section of the filling device can be established. In order e.g. to make water into a sparkling, carbonated drink, a vessel filled with water is connected sealed off to the filling device. The filling valve is then opened by means of the actuation elements and the water-filled vessel is pressurized in a carbon-dioxide atmosphere. Naturally, a pressure container filled with carbon dioxide must be connected to the carbonating device for this purpose. The solubility of carbon dioxide in water is relatively high and increases linearly with the pressure as the pressure rises at room temperature at low pressures up to approx. 10 bar. Thus e.g. at room temperature and approx. 4 bar pressure, approx. 4 standard liters CO
2
gas dissolve in one liter of water (a standard liter represents a gas volume of 1000 cm
3
under so-called standard conditions, i.e. at room temperature and atmospheric pressure). Sometimes, carbon dioxide also forms in the water, breaking down into water and CO
2
when the pressure is relieved, the CO
2
gasses out from the water and causes the beading of gas bubbles generally known of carbonated drinks.
A large number of such carbonating devices are now available on the market. Despite the many undisputed advantages of such carbonating devices, the customary carbonating devices nevertheless have a whole range of disadvantages.
Thus the devices available on the market as a rule have a housing into which a corresponding water bottle can be inserted. In addition, the filling device is often swivellable in order to be able to establish the connection to a bottle neck while in a swivelled position and to then swivel the bottle towards the device so that the bottles can be filled with carbon dioxide in this filling position. This swivellable filling device has the disadvantage however that it is difficult to handle. Thus the filling device must be brought into the swivelled position with one hand and the water bottle placed onto the filling device with the other hand. During this screwing and/or clamping process of the water bottle onto the filling device, it is necessary to leave the filling device in the swivelled position so that one of the user's hands must continuously hold the filling device. However, the water bottle can often be connected to the filling device or detached therefrom with the other hand alone only with difficulty.
The object of the present invention is therefore to create a carbonating device which is easier to handle compared with the carbonating devices customary on the market.
This object is achieved according to the invention in that the swivellable filling device can be locked in the first position, the so-called swivelled position. This makes it possible to first bring the swivellable filling device into the first position and lock it with one hand. Then the water bottle can be clamped or screwed onto the filling device using both hands. Only then is the filling device together with the water bottle unlocked again and brought into the second position, the so-called filling position.
A particularly advantageous version provides that the filling device is preferably elastically pre-tensioned into the second position. This ensures that the user always brings the swivellable filling device fully into the first position as it engages only there. An inadvertent swivelling back of the filling device while the user wants to connect the water bottle to the filling device is thus ruled out.
A particularly expedient version of the present invention provides that at least one device is provided which in the first position of the filling device prevents the actuation of the actuation elements of the valve and/or in the second position of the filling device prevents the connection or detachment of the vessel to or from the filling device. These two measures which can be carried out alternatively or in combination with each other are particularly advantageous for safety reasons. Because, in the first position of the filling device, the actuation of the actuation elements of the valve is prevented, an inadvertent gassing of the liquid during the attaching of the bottle to the filling device can be effectively prevented. The second measure, that in the second position of the filling device the connection or detachment of the vessel to or from the filling device is prevented, ensures that during the gassing, an inadvertent detachment of the water bottle from the filling device is not possible.
In addition, the carbonating devices customary in the trade generally have a rear space which serves to house a pressure container, e.g. a gas bottle, in which the gas to be dissolved in the liquid is stored under pressure. For optical and sometimes also safety reasons, the rear space is sealed by a rear part. However, as the pressure container is to be replaced by the user as required, it is essential for the user to have access to the rear space as required. The rear part can therefore be removed from the rear space in the commercially available carbonating devices. As the rear parts of the known carbonating devices are generally manufactured using an injection-moulding process with the help of a single-impression mould, the removal of the rear part from the carbonating device often proves very difficult. Thus carbonating devices exist in which the rear part must be deformed with one hand in order that it can be detached from the carbonating device. For the most part, this is possible only by expending considerable force.
The ease of handling of the carbonating device according to the invention can therefore be improved still further in that the rear space which [serves] to house a pressure container in which the gas to be dissolved in the liquid is stored under pressure can be sealed by a rear part with the help of a locking device, the locking device having a movable part which is attached to the rear part and the movable part having a first position in which the locking device is closed and a second position in which the locking device is open, the locking device preferably not being pre-tensioned into the first position.
The rear part can thereby now be very easily detached from the rear space. To this end, the user must bring the movable part from the first position into the second position. The rear part can then be detached from the carbonating device. After the pressure container has been replaced, the rear part is then fitted anew onto the carbonating device or the rear space and the locking device brought from the second position into the first position. Because the locking device is not pre-tensioned into the first position, it is guaranteed that the locking device can first be brought into the second position and then, without the locking device having to be held fast in the second position, the rear part can be removed.
Preferably, the movable part of the locking device is essentially a bar or slide which in the lok-ked position engages behind a wall or in the base of the rear space.
It goes without saying that the described locking device can also be used in carbonating devices which have no swivellable part of the filling device which can be locked in the first position.
A further disadvan
Bushey Scott
Dinsmore & Shohl LLP
Soda-Club (CO
LandOfFree
Carbonating device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Carbonating device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carbonating device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3364635