Carbon nanotube-filled composites prepared by in-situ...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S495000, C524S496000

Reexamination Certificate

active

07153903

ABSTRACT:
A method of forming carbon nanotube-filled composites using miniemulsion polymerization. The carbon nanotubes are preferably single-walled carbon nanotubes. The carbon nanotubes are highly dispersed within and associated with the polymer comprising the composite.

REFERENCES:
patent: 3746657 (1973-07-01), Miller et al.
patent: 4456694 (1984-06-01), Blaskie et al.
patent: 4574120 (1986-03-01), Thompson
patent: 4663230 (1987-05-01), Tennent
patent: 5165909 (1992-11-01), Tennent et al.
patent: 5227038 (1993-07-01), Smalley et al.
patent: 5300203 (1994-04-01), Smalley
patent: 5405996 (1995-04-01), Suzuki et al.
patent: 5482601 (1996-01-01), Ohshima et al.
patent: 5543378 (1996-08-01), Wang
patent: 5556517 (1996-09-01), Smalley
patent: 5560898 (1996-10-01), Uchida et al.
patent: 5578543 (1996-11-01), Tennent et al.
patent: 5587141 (1996-12-01), Ohshima et al.
patent: 5591312 (1997-01-01), Smalley
patent: 5603907 (1997-02-01), Grochowski
patent: 5641466 (1997-06-01), Ebbesen et al.
patent: 5648056 (1997-07-01), Tanaka
patent: 5695734 (1997-12-01), Ikazaki et al.
patent: 5698175 (1997-12-01), Hiura et al.
patent: 5707916 (1998-01-01), Snyder et al.
patent: 5744235 (1998-04-01), Creehan
patent: 5753088 (1998-05-01), Olk
patent: 5773834 (1998-06-01), Yamamoto et al.
patent: 5780101 (1998-07-01), Nolan et al.
patent: 5814290 (1998-09-01), Niu et al.
patent: 5877110 (1999-03-01), Snyder et al.
patent: 5965267 (1999-10-01), Nolan et al.
patent: 5985232 (1999-11-01), Howard et al.
patent: 5997832 (1999-12-01), Lieber et al.
patent: 6426134 (2002-07-01), Lavin et al.
patent: 6599961 (2003-07-01), Pienkowski et al.
patent: 6689835 (2004-02-01), Amarasekera et al.
patent: 6782154 (2004-08-01), Zhao et al.
patent: 6900264 (2005-05-01), Kumar et al.
patent: 6905667 (2005-06-01), Chen et al.
patent: 7008563 (2006-03-01), Smalley et al.
patent: 2001/0031900 (2001-10-01), Margrave et al.
patent: 2002/0001620 (2002-01-01), Pienkowski et al.
patent: 2002/0127169 (2002-09-01), Smalley et al.
patent: 2002/0165091 (2002-11-01), Resasco et al.
patent: 2003/0077515 (2003-04-01), Chen et al.
patent: 2003/0089893 (2003-05-01), Niu et al.
patent: 2003/0180526 (2003-09-01), Winey et al.
patent: 2004/0009346 (2004-01-01), Jang et al.
patent: 2004/0028859 (2004-02-01), LeGrande et al.
patent: 03 73 9258 (2006-06-01), None
patent: WO 97/09272 (1997-03-01), None
patent: WO 98/39250 (1998-09-01), None
patent: WO 98/42620 (1998-10-01), None
patent: WO 00/17102 (2000-03-01), None
patent: PCT/US00/15362 (2000-10-01), None
patent: WO 00/73205 (2000-12-01), None
patent: WO 02/076903 (2002-10-01), None
patent: WO 03/038837 (2003-05-01), None
patent: PCT/US02/23155 (2003-07-01), None
patent: PCT/US03/19664 (2004-03-01), None
Alvarez, et al., “Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO”,Elsevier Science Ltd., Carbon 39 (2001), pp. 547-558.
Anderson et al., “50 nm Polystyrene Particles via Miniemulsion Polymerization”, Macromolecules, American Chemical Society, vol. 35, pp. 574-576, 2002.
Bandow et al., “Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes”,The American Physical Society, Physical Review Letters, vol. 80, No. 17, (1998), pp. 3779-3782.
Bethune et al. “Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls”, Letters to Nature, vol. 363, pp. 605-607, Jun. 17, 1993.
Bower et al., “Deformation of Carbon Nanotubes in Nanotube-Polymer Composites”, Applied Physics Letters, vol. 74, No. 22, pp. 3317-3319, May 31, 1999.
V. Brotons et al., “Catalytic influence of bimetallic phases for the synthesis of single-walled carbon nanotubes”, Journal of Molecular Catalysis, A: Chemical, vol. 116, pp. 397-403, Dec. 16, 1997.
Cadek et al., “Mechanical and Thermal Properties of CNT and CNF Reinforced Polymer Composites”, Structural and Electronic Properties of Molecular Nanostructures, American Institute of Physics, pp. 562-565, 2002.
Cassell et al., “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B., American Chemical Society, vol. 103, pp. 6484-6492, 1999.
Chaturvedi et al., “Properties of pure and sulfided NiMo04 and CoMo04 catalysts: TPR, XANES and time-resolved XRD studies”, Database Accession No. EIX9904449081 XP002246342, Proceedings of the 1997 Mrs Fall Symposium, Boston, MA, USA, Dec. 2-4, 1997; Mater Res Soc Symp Proc, Materials Research Society Symposium-Proceedings, Recent Advances in Catalytic Materials, 1998, Mrs. Warrendale, PA, USA.
Che et al., “Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method”, Chemical Mater., vol. 10, pp. 260-267, 1998.
Chen et al., “Growth of carbon nanotubes by catalytic decomposition of CH4or CO on a Ni-MgO catalyst”, Carbon vol. 35, No. 10-11, pp. 1495-1501, 1997.
Cheng et al., “Bulk Morphology and Diameter Distribution of Single-Walled Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons”, Chemical Physics Letters, vol. 289, pp. 602-610, Jun. 19, 1998.
Cheng et al., “Large-Scale and Low-Cost Synthesis of Single-Walled Carbon Nanotubes by the Catalytic Pyrolysis of Hydrocarbons”, Applied Physics Letters, vol. 72, No. 25, pp. 3282-3284, Jun. 22, 1998.
Dai et al., “Single-Wall Nanotubes Product By Metal-Catalyzed Disproportionation of Carbon Monoxide”, Chemical Physics Letters, vol. 260, pp. 471-475, Sep. 27, 1996.
Database, Accession No. 1999-366878, Cano, “Canon KK”, XP-002149235, May 25, 1999.
De Boer et al., “The cobalt-molybdenum interaction in CoMo/SiO2catalysts: A CO-oxidation study”,Elsevier Science Ltd., Solid State Ionics 63-65 (1995), pp. 736-742.
Deng et al., “Hybrid Composite of Polyaniline Containing Carbon Nanotube”, Chinese Chemical Letters, vol. 12, pp. 1037-1040, 2001.
Fonseca et al., “Synthesis of single-and multi-wall carbon nanotubes over supported catalysts”, Applied Physics A, vol. 67, pp. 11-22, 1998.
Franco et al., “Electric and magnetic properties of polymer electrolyte/carbon black composites”, Solid State Ionics 113-115, pp. 149-160, 1998.
Gaspar et al., “The influence of Cr precursors in the ethylene polymerization on Cr/SiO2catalysts”, Applied Catalysis A: General, vol. 227, pp. 240-254, 2002.
Gong et al., “Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites”, Chemical Material, vol. 12, pp. 1049-1052, 2000.
Govindaraj et al., “Carbon structures obtained by the disproportionation of carbon monoxide over nickel catalysts”, Materials Research Bulletin, vol. 33, No. 4, pp. 663-667, 1998.
Hafner et al., “Catalytic growth of single-wall carbon nanotubes from metal particles”, Chemical Physics Letters, vol. 296, pp. 195-202, 1998.
Hamon et al., “End-group and defect analysis of soluble single-walled carbon nanotubes”, Chemical Physics Letters, vol. 347 pp. 8-12, 2001.
Hernadi et al., “Catalytic synthesis of carbon nanotubes using zerolite support”, Elsevier Science Inc. 1996.
Hwang et al., “Carbon nanotube reinforced ceramics”, Journal of Materials Chemistry, vol. 11, pp. 1722-1725, 2001.
Hyperion Catalysis International Website; http://www.fibrils.com/esd.htm;“Unique Slough Resistant SR™ Series ESD Thermoplastic Product Line Offers Reduced Particle Contamination For Demanding Electronic Applications,” and Hyperion Homepage http://www.fibrils.com.
Iijima, “Helical Microtubules of Graphitic Carbon”, Letters to Nature, vol. 354, pp. 56-58, Nov. 7, 1991.
Iijima et al., “Single-Shell Carbon Nanotubes of 1-nm Diameter”, Letters to Nature, vol. 363, pp. 603-605, Jun. 17, 1993.
Ivanov et al., “The Study of Carbon Nanotubules Produced by Catalytic Method”, Chemical Physics Letters, vol. 223, pp. 329-335,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Carbon nanotube-filled composites prepared by in-situ... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Carbon nanotube-filled composites prepared by in-situ..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carbon nanotube-filled composites prepared by in-situ... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3719887

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.