Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
1997-06-19
2002-02-26
Criares, Theodore J. (Department: 1617)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S310000
Reexamination Certificate
active
06350752
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates in general to the control of cellular and neural activity and to the treatment of cellular and neural disorders. More particularly, the present invention is directed to methods and associated compositions and medicaments for the modification of mammalian cellular and neural activity through the administration of carbon monoxide dependent guanylyl cyclase modulating purine derivatives which selectively and controllably induce the in vivo genetic expression of naturally occurring genetically encoded molecules including neurotrophic factors. The methods, compositions, and medicaments of the present invention may be used to affect a variety of cellular and neurological activities and to therapeutically or prophylactically treat a wide variety of physiological, neurodegenerative, and neurological disorders.
BACKGROUND OF THE INVENTION
The evolution of the central nervous system in mammals was a natural response to an increasingly complex environment requiring solutions to difficult problems. The resulting structure is an intricate biochemical matrix that is precisely controlled and attenuated through an elaborate system of chemically modulated regulatory pathways. Through an elaborate series of highly specific chemical reactions, these pathways oversee and direct every structural and operational aspect of the central nervous system and, through it, the organism itself. Normally the complex interplay of the various control systems cooperates to produce a highly efficient, versatile central nervous system managed by the brain. Unfortunately, when the biochemical matrix of the central nervous system is damaged, either through age, disease or other reasons, the normal regulatory pathways may be incapable of effectively compensating for the loss. In such cases it would be highly desirable to modify or supplement the neural mechanisms to prevent or compensate for such disorders. That is the focus of the present invention.
More specifically, the mammalian brain is composed of approximately ten billion nerve cells or “neurons” surrounded by a even greater number of support cells known as neuroglia or astrocyte cells. Neurons, like other cells of the body, are composed of a nucleus, a cytoplasm and a surrounding cell membrane. However, unlike other cells, neurons also possess unique, fiberlike extensions allowing each individual nerve cell to be networked with literally thousands of other nerve cells to establish a neural infrastructure or network. Communication within this intricate network provides the basis for all mental processes undertaken by an organism.
In each nerve cell, incoming signals are received by neural extensions known as “dendrites” which may number several thousand per nerve cell. Similarly, neural information is projected along nerve cell “axons” which may branch into as many as 10,000 different nerve endings. Together, these nerve cell axons and dendrites are generally termed “neurites” through which each individual neuron can form a multitude of connections with other neurons. As a result, the number of possible neural connections in a healthy brain is in the trillions, giving rise to tremendous mental capacity. Conversely, when the connections within the neural network break down as nerve cells die or degenerate due to age, disease, oxidative stress, or direct physical insult, the mental capacity of the organism can be severely compromised.
The connection of the individual axons with the dendrites or cell bodies of other neurons takes place at junctions or sites known as “synapses.” It is at the synapse that the individual neurons communicate with each other through the flow of chemical messengers across the synaptic junction. The majority of these chemical messengers, or “neurotransmitters,” are small peptides, catecholamines or amino acids. When the appropriate stimulus is received by a neural axon connection, the neurotransmitters diffuse across the synapse to the adjacent neuron, thereby conveying the stimulus to the next neuron along the neural network. Based upon the complexity of the information transferred between the nerve cells, it is currently believed that between 50 and 100 distinct neurotransmitters are used to transmit signals in the mammalian brain.
Quite recently, it was discovered that nitric oxide (NO) and carbon monoxide (CO) may function as neurotransmitters. These gaseous molecules appear to participate in a number of neuronal regulatory pathways affecting cell growth and interactions. In the brain, as well as in other parts of the body, CO is produced by the enzyme “heme oxygenase II” (HO). Whether produced from the HO enzyme or from other sources, it is believed that when CO diffuses into a neuron it induces a rise in a secondary transmitter molecule known as “cyclic guanosine monophosphate ” (cGMP), by modulating an enzyme known as “guanylate cyclase” or “guanylyl” cyclase. Thus, CO acts as a signaling molecule in the guanylyl cyclase regulatory pathway. The resultant increase in cGMP levels appears to modify several neurotropic factors as well as other neuronal factors which may induce, promote or modify a variety of cellular functions including cell growth, protection, and intercellular communication.
Neurotrophic factors are molecules that exert a variety of actions stimulating both the development and differentiation of neurons and the maintenance of cellular integrity and are required for the survival and development of neurons throughout the organism's life cycle. Generally, neurotrophic factors may be divided into two broad classes: neurotrophins and pleiotrophins. Pleiotrophins differ from the neurotrophins in that they lack a molecular signal sequence characteristic of molecules that are secreted from cells and they also affect many types of cells including neurons. Two effects of neurotrophic factors are particularly important: (i) the prevention of neuronal death and (ii) the stimulation of the outgrowth of neurites (either nascent axons or dendrites). In addition, it appears that CO-induced neurotrophic factors may reduce the membrane potential of nerve cells making it easier for the neurons to receive and transmit signals.
Many of today's researchers believe that memory is associated with the modification of synaptic activity, wherein the synaptic connections between particular groups of brain neurons become strengthened or facilitated after repeated activation. As a result, these modified connections activate much easier. This type of facilitation is believed to occur throughout the brain but may be particularly prominent in the hippocampus, a brain region which is crucial for memory. The stimulation of neuronal pathways within the hippocampus can produce enhanced synaptic transmission through these pathways for many days following the original stimulation. This process is known as long term potentiation (LTP).
More particularly, long term potentiation is a form of activity-dependent synaptic electrical activity that is exhibited by many neuronal pathways. In this state, generally accepted as a type of cellular memory, nerve cells are more responsive to stimulation. Accordingly, it is widely believed that LTP provides an excellent model for understanding the cellular and molecular basis of synaptic plasticity of the type that underlies learning and memory in vertebrates, including man.
NO and CO are currently the leading candidates for messenger substances that facilitate LTP because inhibitors of these compounds retard the induction of potentiation. The ability to modify neural activity and to increase the ease of LTP using these or other signal transducers could potentially increase learning rates and cognitive powers, possibly compensating for decreased mental acuity. Prior to the present invention, there were no known methods or agents which could operate on the cellular level in vivo to reliably modify cellular and neural regulatory pathways so as to facilitate the LTP of neurons.
In contrast to the enhanced mental capacity provided by long term potentiation, m
Glasky Alvin J.
Rathbone Michel P.
Criares Theodore J.
Farber, Esq. Michael B.
Oppenheimer Wolff & Donnelly LLP
LandOfFree
Carbon monoxide dependent guanylyl cyclase modifiers and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Carbon monoxide dependent guanylyl cyclase modifiers and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carbon monoxide dependent guanylyl cyclase modifiers and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2946001