Carbon monoxide containing polymers derived from synthesis...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymer of an ethylenically unsaturated reactant with a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S089000, C526S227000, C526S228000, C526S230000, C526S232100, C526S303100, C526S307800, C526S341000, C526S344000, C524S717000, C524S726000

Reexamination Certificate

active

06262225

ABSTRACT:

FIELD OF THE INVENTION
The invention is directed towards terpolymers of olefin, carbon monoxide and at least one vinyl monomer wherein the carbon monoxide is derived from synthesis gas. The invention also encompasses a method for producing the olefin-carbon monoxide-vinyl monomer polymers using free radical polymerization.
BACKGROUND
Terpolymers of ethylene-carbon monoxide-X (“E—CO—X”), where X is third monomer such as vinyl acetate or methyl methacrylate are generally made from pure ethylene, carbon monoxide (“CO”), and vinyl acetate or methyl methacrylate feeds. These polymers are prepared using free radical initiators at high pressures and temperatures. Furthermore, these polymers are random which are generally difficult to make using organometallic catalysts. The E—CO—X terpolymers formed from free radical polymerization are useful as PVC modifiers and degradable films. Unfortunately, using pure feeds to produce these polymers increases the cost, which can make production too costly.
Synthesis gas feeds which contain carbon monoxide and hydrogen are formed by various gas conversion processes, and are quite abundant. Such feeds are often used for producing chemicals but are not considered for polymerization because of insufficient purity.
Thus, there is a need for providing a low cost method to produce olefin-CO-vinyl monomer terpolymers.
SUMMARY OF INVENTION
The instant invention provides olefin-CO-vinyl monomer terpolymers which are derived from an olefin feed, a synthesis gas feed and at least one vinyl monomer feed. These terpolymers may be used as effective plasticizers in polyvinyl chloride compositions.
In one embodiment, the invention is a composition comprising an olefin-carbon monoxide-X terpolymer wherein carbon monoxide is incorporated via a synthesis gas feed and X is at least one vinyl monomer.
In another embodiment, the invention is a polymerization method comprising reacting an olefin feed, a synthesis gas feed and at least one vinyl monomer feed under free radical polymerization conditions to form an olefin-carbon monoxide-X terpolymer wherein X is at least one vinyl monomer.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description and appended claims.
DETAILED DESCRIPTION OF THE INVENTION
The invention relates to a composition comprising a terpolymer of olefin, CO and at least one vinyl monomer wherein the CO is derived from synthesis gas. It should be appreciated by those skilled in the art that the term “terpolymer” is used herein as meaning a macromolecure formed from at least three monomer sources. Similarly, the term “copolymer” is used herein according to its broad meaning of a macromolecule formed from two or more monomer sources. Also, the term “polymer” is used herein according to its broad meaning of a macromolecule formed from at least one monomer source. The term “synthesis gas” (a.k.a., “syngas”) refers to a gas mixture comprising predominantly of CO and hydrogen in various proportions and may contain other components in lesser quantities.
More specifically, syngas can be made by many processes, the most common being partial oxidation and steam reforming. Feedstocks can vary from coal (in which case the partial oxidation process is often referred to as “gasification”) to natural gas. Combinations of partial oxidation and steam reforming, for example autothermal reforming, are often used to optimize the cost of producing a syngas of specific composition. The specific composition of the syngas from these conversion technologies will be influenced by temperature, pressure, and concentrations of co-reactants, including steam and CO
2
. The watergas shift reaction is often used to adjust the H
2
/CO ratio of the syngas composition. Separation technologies are also used to adjust syngas composition, and syngas compositions can be varied in an infinite manner by the combination of these reaction and separation technologies. Lowest cost syngas is usually made by application of the fewest process steps, such that syngas ratios between H
2
/CO of 0.5 and 3 are usually most economical to produce. These processes and combinations, as well as the major components that are present in the resulting syngas, are well known in the art. In the present invention, the ratio of H
2
/CO is between 10:90 and 90:10. More preferably, the ratio of H
2
/CO is between 25:75 and 75:25. Most preferably, the ratio of H
2
/CO is between 40:60 and 60:40.
In one embodiment, the invention is a composition comprising an olefin-CO-vinyl monomer terpolymer derived from an olefin feed, a synthesis gas feed and at least one vinyl monomer feed. The olefins (i.e., olefinically unsaturated compounds) useful in the invention typically contain up to about 20 carbon atoms and preferably up to 10 carbon atoms. They may contain heteroatoms; however, it is preferred that the olefinically unsaturated compounds are hydrocarbons. A preferred class of olefinically unsaturated hydrocarbons are aliphatic mono-olefins, in particular &agr;-olefins of which ethylene is particularly preferred for one of the olefin feeds. As for the other olefin feed(s), the following are preferred: 1-butene, propylene, styrene, vinyl acetate, and acrylates. Of these 1-butene and propylene are particularly preferred.
The vinyl monomer feed may contain at least one free radical-polymerizable vinyl comonomer, or a cofeed containing such a comonomer can be used. Vinyl monomers useful in the invention include &agr;-olefins (preferably C
3
to C
30
olefins) such as propylene, butene, 1-octene, 1-octadecene, styrene and styrene derivatives such as &agr;-methylstyrene, p-methylstyrene, tetrafloroethylene, vinyl chloride, vinyl acetate, isobutyl vinyl ether, methyl vinyl ketone, 1-vinylpyrrolidone, acrylic acid, methacrylic acid, methylacrylate, methylmethacrylate, acrylonitrile, acrylamide, acrolein, allyl alcohol, allyl chloride, allyl acetate, mixtures thereof and similar materials. While the vinyl monomer concentration in the feed may range from zero or trace amounts to about 95 mole %, the preferred concentration ranges from about 5 mole % to 80 mole %.
The number average molecular weight (“Mn”) of the copolymers formed in accordance with the invention can range from about 100 to about 1,000,000 with a preferred range from about 200 to 100,000. In a preferred embodiment, the polymer of the invention comprises 40-90 mole % ethylene, 3-40 mole % carbon monoxide, and 5-60 mole % vinyl monomer.
The ratio of the number of monomer units originating in the olefins to the number of carbon atoms originating in carbon monoxide is preferably at most about 99:1 and more preferably in the range of from about 90:1 to about 1:1, and still more preferably from about 95:1 to about 1:1.
In another embodiment, the invention provides a polymerization method for reacting an olefin feed, a synthesis gas feed and at least one vinyl monomer feed under free radical copolymerization conditions to produce the olefin-CO-vinyl monomer terpolymer composition described above. The free radical polymerization process uses organic peroxides as a free radical initiator according to conventional methods well known to those skilled in the art. Representative initiators include, but are not limited to, dialkyl peroxides such as ditertiary-butyl peroxide, 2,5-dimethyl-2,5-ditertiary-butyl-peroxyhexane, di-cumyl peroxide; alkyl peroxides such as tertiary-butyl hydroperoxide, tertiary-octyl hydroperoxide, cumene hydroperoxide; aroyl peroxides such as benzoyl peroxide; peroxy esters such as tertiary-butyl peroxypivalate, tertiary-butyl-perbenzoate; and compounds such as azo-bis-isobutyronitrile. Free radical initiators with an appropriate half life at reaction temperatures ranging from about 50° C. to about 230° C. can be used. Of these, t-butyl peroxypivalate, which has a half life of about 10 hours at 66° C., is preferred.
Typically copolymerization will occur at temperatures ranging from about 50 to about 230° C. and preferably from about 50° C. to about 200° C. Pressures

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Carbon monoxide containing polymers derived from synthesis... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Carbon monoxide containing polymers derived from synthesis..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carbon monoxide containing polymers derived from synthesis... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2549824

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.