Carbon-containing components of aluminium production cells

Electrolysis: processes – compositions used therein – and methods – Electrolytic synthesis – Utilizing fused bath

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C205S384000, C205S380000, C204S243100, C204S247300, C204S280000

Reexamination Certificate

active

06607657

ABSTRACT:

TECHNICAL FIELD
The invention relates to the application of refractory borides to carbon-based components of cells for the production of aluminium by electrolysis of alumna dissolved in a cryolite-based molten electrolyte, in particular carbon cathodes. The invention also relates to such cells having carbon-based components protected from the corrosive attacks of liquids and/or gaseous components of the electrolyte in the form of elements, ions or compounds by having refractory borides applied to their surfaces, as well as the use of these cells for the production of aluminium.
BACKGROUND ART
Aluminium is produced conventionally by the Hall-Héroult process, by the electrolysis of alumina dissolved in cryolite-based molten electrolytes at temperature up to around 950° C. A Hall-Héroult reduction cell typically has a steel shell provided with an insulating lining of refractory material, which in turn has a lining of carbon which contacts the molten constituents. Conductor bars connected to the negative pole of a direct current source are embedded in the carbon cathode substrate forming the cell bottom floor. The cathode substrate is usually an anthracite based carbon lining made of prebaked cathode blocks, joined with a ramming mixture of anthracite, coke, and coal tar.
In Hall-Héroult cells, a molten aluminium pool acts as the cathode. The carbon lining or cathode material has a useful life of three to eight years, or even less under adverse conditions. The deterioration of the cathode bottom is due to erosion and penetration of electrolyte and liquid aluminium as well as intercalation of sodium, which causes swelling and deformation of the cathode carbon blocks and ramming mix. In addition, the penetration of sodium species and other ingredients of cryolite or air leads to the formation of toxic compounds including cyanides.
Difficulties in operation also arise from the accumulation of undissolved alumina sludge on the surface of the carbon cathode beneath the aluminium pool which forms insulating regions on the cell bottom. Penetration of cryolite and aluminium through the carbon body and the deformation of the cathode carbon blocks also cause displacement of such cathode blocks. Due to displacement of the cathode blocks, aluminium reaches the steel cathode conductor bars causing corrosion thereof leading to deterioration of the electrical contact, non uniformity in current distribution and an excessive iron content in the aluminium metal produced.
A major drawback of carbon as cathode material is that it is not wetted by aluminium. This necessitates maintaining a deep pool of aluminium (at least 100-250mm thick) in order to ensure a certain protection of the carbon blocks and an effective contact over the cathode surface. But electromagnetic forces create waves in the molten aluminium and, to avoid short-circuiting with the anode, the anode-to-cathode distance (ACD) must be kept at a safe minimum value, usually 40 to 60 mm. For conventional cells, there is a minimum ACD below which the current efficiency drops drastically, due to short-circuiting between the aluminium pool and the anode. The electrical resistance of the electrolyte in the inter-electrode gap causes a voltage drop from 1.8 to 2.7 volts, which represents from 40 to 60 percent of the total voltage drop, and is the largest single component of the voltage drop in a given cell.
To reduce the ACD and associated voltage drop, extensive research has been carried out with Refractory Hard Metals or Refractory Hard Materials (RHM) such as TiB
2
as cathode materials. TiB
2
and other RHM's are practically insoluble in aluminium, have a low electrical resistance, and are wetted by aluminium. This should allow aluminium to be electrolytically deposited directly on an RHM cathode surface, and should avoid the necessity for a deep aluminium pool. Because titanium diboride and similar Refractory Hard Metals are wettable by aluminium, resistant to the corrosive environment of an aluminium production cell, and are good electrical conductors, numerous cell designs utilizing Refractory Hard Metal have been proposed, which would present many advantages, notably including the savings of energy by reducing the ACD.
The use of titanium diboride and other RHM current-conducting elements in electrolytic aluminium production cells is described in U.S. Pat. Nos. 2,915,442, 3,028,324, 3,214,615, 3, 314, 876, 3,330,756, 3,156,639, 3,274,093 and 3,400,061. Despite extensive efforts and the potential advantages of having surfaces of titanium diboride at the cell cathode bottom, such propositions have not been commercially adopted by the aluminium industry.
The non-acceptance of tiles and other methods of applying layers of TiB
2
and other RHM materials on the surface of aluminium production cells is due to their lack of stability in the operating conditions, in addition to their cost. The failure of these materials is associated with penetration of the electrolyte when not perfectly wetted by aluminium, and attach by aluminium because of impurities in the RHM structure. In RHM pieces such as tiles, oxygen impurities tend to segregate along grain boundaries leading to rapid attack by aluminium metal and/or by cryolite. To combat disintegration, it has been proposed to use highly pure TiB
2
powder to make materials containing less than 50 ppm oxygen. Such fabrication further increases the cost of the already-expensive materials. No cell utilizing TiB
2
tiles as cathode is known to have operated for long periods without loss of adhesion of the tiles, or their disintegration. Other reasons for failure of RHM tiles have been the lack of mechanical strength and resistance to thermal shock.
Various types of TiB
2
or RHM layers applied to carbon substrates have failed due to poor adherence and to differences in thermal expansion coefficients between the titanium diboride material and the carbon cathode block.
U.S. Pat. No. 4,093,524 discloses bonding tiles of titanium diboride and other Refractory Hard Metals to a conductive substrate such as graphite. But large differences in thermal expansion coefficients between the RHM tiles and the substrate cause problems.
Copending application Ser. No. 08/028,359 (MOL0516), the content whereof is incorporated herein by way of reference, provides a method of bonding bodies of Refractory Hard Material (RHM) or other refractory composites to carbon cathodes of aluminium protection cells using a colloidal slurry comprising particulate preformed RHM in a colloidal carrier selected from colloidal alumina, colloidal yttria and colloidal ceria as a glue between the bodies and the cathode or other component. The slurry is dried to bond the bodies to the cathode or other component, the dried slurry acting as a conductive thermally-matched glue which provides excellent bonding of the bodies to the cathode or other component.
PCT application PCT/EP93/00811 (MOL0508) discloses a method or producing a protective refractory coating on a substrate of, inter-alia, carbonaceous materials by applying to the substrate a micropyretic reaction layer from a slurry containing particulate reactants in a colloidal carrier, and initiating a micropyretic reaction. The micropyretic slurry optionally also contains some preformed refractory material, and the micropyretic slurry may be applied on a non-reactive sub-layer.
PCT application PCT/EP93/00810 (MOL0513) discloses a body of carbonaceous or other material for use in corrosive environments such as oxidising media or gaseous or liquid corrosive agents at elevated temperatures, coated with a protective surface coating which improves the resistance of the body to oxidation or corrosion and which may also enhance the bodies electrical conductivity and/or its electrochemical activity. This protective coating—in particular silica-based coatings—is applied from a colloidal slurry containing particulate reactant or non-reactant substances, or a mixture of particulate reactant and non-reactant substances, which when the body is heated to a sufficient elevated temperature form the pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Carbon-containing components of aluminium production cells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Carbon-containing components of aluminium production cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carbon-containing components of aluminium production cells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102490

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.