Metal treatment – Process of modifying or maintaining internal physical... – Carburizing or nitriding using externally supplied carbon or...
Reexamination Certificate
1999-03-08
2001-05-22
King, Roy (Department: 1742)
Metal treatment
Process of modifying or maintaining internal physical...
Carburizing or nitriding using externally supplied carbon or...
C148S222000, C148S232000, C148S218000
Reexamination Certificate
active
06235128
ABSTRACT:
TECHNICAL FIELD
The present invention relates to carbon and alloy steels, and especially relates to thermochemical treatments for carbon and alloy steels.
BACKGROUND OF THE INVENTION
It is well known in the art that various types of treatments of steels can be employed to improve wear resistance, enhancing performance of tribologically stressed steel components, such as those employed in an internal combustion engine. One conventional technique is carbonitriding where the surface of the article becomes enriched with carbon and nitrogen. This process comprises treating the article at elevated temperatures, i.e. about 1550° F. (about 845° C.) to a bout 1700° F. (about 925° C.), with gaseous forms of carbon and nitrogen as is set forth in the ASM Handbook, Volume 4
, Heat Treating
, p. 376-386, ASM International, 1991 (incorporated herein by reference). Conventionally, when this process is employed, an article is carbonitrided, quenched, tempered, and subsequently net shaped. This process typically produces articles having a surface hardness below HV 750 (Vicker Hardness).
Alternatively, plasa (ion) nitriding has been employed to enrich the article's boundary layer with nitrogen, has been employed. In this process, the hardened layer is formed by using glow discharge in a vacuum vessel where nascent nitrogen impinges on the article through plasma bombardment, forming a compound layer, commonly called a white layer, of predominantly gammna prime nitride (Fe
4
N). (see ASM Handbook, Volume 4
, Heat Treating
, p.420, ASM International, 1991 (incorporated herein by reference)). When this process is employed, the article is typically treated at lower temperatures than carbonitriding, i.e. about 840° F. (about 450° C.) to about 975° F. (about 525° C.), for an extended period of time which typically reaches or exceeds about twenty-four (24) hours. The layer formed by this process typically has a hardness of HV 700, with greater than HV 1200 in the compound layer.
What is needed in the art is a process for forming wear resistant articles in a reduced processing time.
SUMMARY OF THE INVENTION
The present invention relates to a unique treatment process for carbon and alloy steel articles. This process comprises: fabricating the article into a desired shape; carbonitriding the fabricated article; tempering the carbonitrided article; and plasma nitriding the tempered article.
The above discussed and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention is a unique sequential process for forming a steel article comprising: fabricating the article, carburizing and/or carbonitriding the article to produce a treated article, tempering the treated article, optionally net-shaping the tempered article, and plasma (ion) nitriding the net-shaped article.
The article is produced via conventional fabricating processes to, preferably, closely meet the article's tolerance requirements, and then heat treating the article to adjust the mechanical properties.
Once fabricated, the article can be carburized or carbonitried. Both of these processes comprise heating the article in an enclosure such as a furnace, to a sufficient temperature and inducing gaseous carbon, or gaseous carbon and nitrogen to diffuse into the surface of the article, typically about 1,550° F. to about 1,700° F. (about 845° C. to about 925° C.). This process is continued for a sufficient period of time to obtain the desired depth of the carbon or carbon
itrogen layer; typically up to about 4 hours. The desired layer depth, which is based upon the specific application of the article, is obtained via the interdependent properties of temperature, gas concentration, and duration of heating. The desired depth of the carbon or carbon
itrogen rich layer is typically up to or exceeding about 0.75 millimeter (mm), with up to about 0.50 mm preferred.
The gaseous carbon atmosphere is adjusted according to the iron-carbon equilibrium diagram (carbon absorption by iron versus temperature) for suitable solubility of the carbon in the austentite solution of the subject article, with about 0.50 to about 0.95 weight percent (wt %) of carbon absorption into the article preferred, while nitrogen absorption of up to 0.5 wt % is preferred. The desired relative amounts of carbon and nitrogen is based upon the desired composition at the surface of the article.
While heating, a gaseous mixture of endothermic gases and enriching gases is introduced to the enclosure containing the article. The endothermic gas generally comprises those derived (typically via reaction with air) from natural gas, methane, butane and/or propane, including, but are not limited to, gaseous nitrogen, hydrogen, carbon dioxide, carbon monoxide, water and methane, among others, with a typical gaseous composition comprising 40% nitrogen gas, 40% hydrogen gas, 20% carbon monoxide gas, with enriching gases of ammonia, natural gas, propane, methane, and/or butane. Note, other carbon and/or nitrogen containing gases and mixtures thereof, can be employed with the present invention. The relative amounts of the various gases employed in the mixture is based upon the carbon potential needed in the atmosphere to achieve the desired 0.50 to 0.95 weight percent (wt %) carbon absorption into the article. This carbon potential is controlled by an adequate carbon dioxide:carbon monoxide ratio, as set forth in ASM Handbook, Volume 4
, Heat Treating
, p. 317, ASM International, 1991 (pages 312-324 are hereby incorporated by reference).
After the article has been carburized or carbonitrided, it is cooled or quenched, preferably to near room temperature. The cooling rate of the article should be sufficient to allow the formation of a mixture of microstructure containing martensite and retained austentite, with the amount of retained austenite possibly being up to about 50%, depending on carbon and nitrogen content in the enriched case. The surface hardness of this article can attain about HV 653 or greater.
After the article has been carburized/carbonitrided and quenched, it is tempered to reduce internal stresses. Rapid cooling and absorption of carbon and nitrogen during carbonitriding cause volume change and internal stresses in the article. A suitable tempering temperature allows relaxation of such internal stresses and a reaching of an equilibrium state of volume stability for the subsequent plasma (ion) nitriding process. Consequently, the article is preferably heated to about 250° F. to about 960° F. (about 120° C. to about 515° C.) for up to about 2.0 hours, although other times and temperatures can be employed.
Once tempered the article is preferably “net-shaped”, by machining or otherwise processing, to the desired specification. This process forms the article to the final dimensions, correcting for any dimensional changes which may have resulted from the carburizing/carbonitriding and tempering processes. Possible net-shaping processes include, but are not limited to, machining, grinding, surface finishing, honing, tumbling, among others.
In order to improve the tribological success of the article, it is subsequently subjected to plasma (ion) nitriding. Plasma (ion) nitriding essentially comprises: heating the article in a vacuum enclosure, introducing nitrogen and hydrogen gases to the enclosure, and maintaining a load at a high negative direct current potential, exceeding about 600 volts (V), with respect to the grounded enclosure. Under the influence of this voltage, the nitrogen gas is ionized, an accelerated toward the article which functions as a cathode. Upon impact with the article, the nitrogen absorbs into the article to forming a compound layer up to about 20 microns deep, of predominantly a gamma prime nitride (Fe4 N) microstructure. The hardness in this compound layer could reach or exceed about 1200 HV. The period of time for the plasma (ion) nitriding process utilized to obtain such a hardness can be less
Chang John C.
Krieg John Joseph
Kunitzer Jeffrey W.
Lu Lynn
Roe Richard Blanco
Coy Nicole
King Roy
VanOphem John R.
LandOfFree
Carbon and alloy steels thermochemical treatments does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Carbon and alloy steels thermochemical treatments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carbon and alloy steels thermochemical treatments will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2567842