Registers – Coded record sensors – Particular sensor structure
Utility Patent
1998-04-14
2001-01-02
Hajer, Donald (Department: 2876)
Registers
Coded record sensors
Particular sensor structure
C235S487000, C235S491000, C235S493000, C235S451000, C235S492000
Utility Patent
active
06168080
ABSTRACT:
TECHNICAL FIELD
The invention relates to the acquisition of encoded information from the contents of sealed envelopes or other layered structures that conceal the information from view.
BACKGROUND
Much of bulk return mail is processed with at least some manual handling, especially when it contains orders. Once cut open, the envelopes are generally emptied by hand; and information from their contents is keyboarded, optically scanned, or otherwise entered into a computer. The required steps of opening the envelopes, separating their contents, and entering relevant data are expensive and time consuming. Also, data entry is subject to error, especially when information from the separated envelopes must be linked to information from their contents.
Outgoing mail, which may be passed through inserters, is also subject to sorting and other processing errors that are difficult to detect; because once sealed, the contents are concealed from view. Various attempts have been made to “see through” the envelopes to read their contents without opening them, but problems plague each.
U.S. Pat. No. 5,522,921 to Custer proposes use of x-rays for reading envelope contents that are printed with special x-ray opaque materials. The x-rays are intended to penetrate the envelopes and their contents except where blocked by the special materials. A resulting shadow pattern is detected by an x-ray reading device. However, the special materials add expense and limit printing options, and the x-rays pose health risks that are difficult to justify for these purposes.
U.S. Pat. No. 5,288,994 to Berson uses infrared light in a similar manner to read the contents of sealed envelopes. A light source directs a beam of the infrared light through the envelopes to an optical detector that records a shadow pattern caused by different absorption characteristics between conventional inks and the paper on which they are printed. However, such filled envelopes make poor optical elements for transmitting images, even for transmissions in the infrared spectrum. Paper does not transmit the infrared images very efficiently. Irregularities in the surfaces, spacing, layering, and materials of the envelopes and their contents cause significant aberrations that can greatly diminish resolution of the images. Also, overlays of printed material on the envelopes and their contents are difficult to separate, and printed backgrounds can reduce contrast.
Except for differences in wavelength, these prior art attempts are analogous to shining a flashlight through one side of an envelope in the hope of reading darker printed matter through the envelope's opposite side. X-rays penetrate paper very easily but are dangerous and require special materials to stop them. Near infrared wavelengths transmit poorly through paper, and their images are subject to aberration from optical inconsistencies and to obscuration from printed overlays or backgrounds.
U.S. patent application 08/778,077, filed Jan. 2, 1997, by two of the present co-inventors Verschuur and Mitchell, uses microwave heating of conductive or dielectric patterns and subsequent infrared detection of the thermal image conducted to the surface of the envelope to determine the information content inside a sealed envelope.
The two present co-inventors along with a third co-inventor have developed another approach to reading through envelopes—the subject of this application, which is independent of any wavelength of radiation, either for seeing through or detecting emission from the surface of an envelope. Instead, a transducer measures changes in capacitance of a localized region beneath the surface of the envelope, such as can be produced by conductive inks or inks with a dielectric constant different from the paper upon which it is printed. This technique shares common elements with other inventions, particularly those for authenticating lottery tickets, documents, and currency, yet is substantially different in both function and purpose.
U.S. Pat. No. 5,621,200 to Irwin, Jr. et al. discloses an electronic validation system for scratch-off lottery tickets. A conductive ink containing a pattern of resistors is printed as a portion of the scratch-off material or underlying play indicia. Capacitors are used to couple the printed resistor circuits to an electronic verification machine to verify electronic signature patterns of the resistor circuits. The electronic signatures are comparable to predetermined standards, but they do not contain information encoded in conventional formats that can be read as alphanumeric characters. Also, each ticket must be tested one at a time at a predetermined position within the verification machine.
U.S. Pat. No. 3,519,802 to Cinque et al. discloses an early attempt at authenticating credit cards with internally encoded data. Conductive plates are arranged in a pattern; and their presence, absence, or proximate orientation is detected by a capacitance sensor. However, the detection system requires the conductive plates to be bent into two offset planes that complicate manufacture and are not readily applicable to thinner substrates such as sheet materials normally enclosed by envelopes.
U.S. Pat. No. 4,591,189 to Holmen et al. discloses a more recent example of a credit card verification system in which a light transmitting authenticating layer is sandwiched between two anti-reflective film layers. The authenticating layer is preferably vacuum deposited, such as by sputtering, but can also be formed by a printed layer of conductive ink. The impedance, conductance, or capacitance of the authenticating layer can be detected, though capacitance is not recommended for detecting discrete areas of the authenticating layer. Beyond authentication, the conductive layer does not contain any useful information.
SUMMARY OF THE INVENTION
Our invention takes a different approach to accessing information from the contents of sealed envelopes or other layered structures by making use of localized capacitance changes introduced onto a substrate, such as a paper insert inside an envelope, by conductive or dielectric ink used to print encoded information such as a bar-code. The information obtained by the capacitance measurements can be meaningfully interpreted and used to affect further processing of the envelopes or other layered structures.
The encoded information concealed behind a cover, such as an envelope, can be printed on a substrate in a pattern using an electrically conductive ink. The substrate and cover are moved past a capacitance sensor at a rate that permits successive portions of the pattern to be measured at points of approximately equal proximity to the capacitance sensor. Variations in capacitance associated with the pattern of the conductive ink are detected as a function of the relative position of the capacitance sensor along the covered substrate and are compared to stored information about similar patterns for reading the encoded information.
The invention is particularly useful for processing a succession of envelopes having processing information encoded in their contents. The processing information is recorded in patterns of contrasting permittivity. The envelopes are transported together with their encoded contents past a capacitance sensor. Measured variations in the capacitance associated with the patterns of contrasting permittivity are deciphered into recognized units of information. Subsequent processing among envelopes is distinguished on the basis of the processing information obtained from their contents.
For example, the processing information can be arranged to identify intended addressees of the envelopes. The actual addressees can be read by standard optical means from the exterior of the envelopes and compared to the address information obtained from their contents to verify if they match. The further processing of the envelopes is discontinued upon detection of a mismatch. Alternatively, the address information obtained from the envelopes' contents can be used to print corresponding address information on the exterior
Leordeanu Corneliu C.
Mitchell, Jr. Chauncey T.
Verschuur Gerrit L.
Eugene Stephens & Associates
Felten Daniel S
Hajer Donald
Translucent Technologies LLC
LandOfFree
Capacitive method and apparatus for accessing contents of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Capacitive method and apparatus for accessing contents of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Capacitive method and apparatus for accessing contents of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2479403