Cantilevered multilevel LIGA devices and methods

Electrolysis: processes – compositions used therein – and methods – Electrolytic coating – Coating selected area

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C205S123000, C205S125000, C430S325000

Reexamination Certificate

active

06458263

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to the fields of semiconductors and microelectromechanical devices and processing techniques therefor, and particularly to the methods used in formation of metal microminiature structures. More specifically, the invention relates to the fabrication of components of micron or submicron dimensions using conductive polymer compositions containing metallic particles and lithographically or otherwise patterned masks. The invention pertains to miniaturization and “nanotechnology,” and has utility in many fields, including microelectromechanical system fabrication and semiconductor processing.
BACKGROUND
Microelectromechanical systems (commonly referred to as “MEMS”) are useful in a wide variety of fields and include, for example, micro-sensors, micro-actuators, micro-instruments, micro-optics, and the like. Many MEMS fabrication processes are known, and tend to fall into the two categories of surface micro-machining and bulk-micromachining. The latter technique involves formation of microstructures by etching directly into a bulk material, typically using wet chemical etching or reactive ion etching (“RIE”). Surface micro-machining involves fabrication of MEMS from films deposited on the surface of a substrate, e.g., from thin layers of polysilicon deposited on a sacrificial layer of silicon dioxide present on a single crystal silicon substrate (this technique is commonly referred to as the “thin film polysilicon process”).
An exemplary surface micro-machining process is known as “LIGA.” See, for example, Becker et al. (1986), “Fabrication of Microstructures with High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography Galvanoforming, and Plastic Moulding (LIGA Process),”
Microelectronic Engineering
4(1):35-36; Ehrfeld et al. (1988), “1988 LIGA Process: Sensor Construction Techniques via x-Ray Lithography,”
Tech. Digest from IEEE Solid-State Sensor and Actuator Workshop
, Hilton Head, S. C.; Guckel et al. (1991)
J. Micromech. Microeng
. 1: 135-138. A related process is termed “SLIGA,” and refers to a LIGA process involving sacrificial layers. LIGA is the German acronym for X-ray lithography (“lithographie”), electrodeposition (“galvanoformung”) and molding (“abformtechnik”), and was developed in the mid-1970's. LIGA involves deposition of a relatively thick layer of an X-ray resist on a substrate, e.g., metallized silicon, followed by exposure to high-energy X-ray radiation through an X-ray mask, and removal of the irradiated resist portions using a chemical developer. The mold so provided can be used to prepare structures having horizontal dimensions—i.e., diameters—on the order of microns. The technique is now used to prepare metallic microcomponents by electroplating in the recesses (i.e., the developed regions) of the LIGA mold. See, for example, U.S. Pat. Nos. 5,190,637 to Guckel et al. and 5,576,147 to Guckel et al.
Unfortunately, one of the serious disadvantages of LIGA is that, unlike silicon MEMS, there is currently no way to easily and economically build multilevel LIGA devices, particularly cantilevered multilevel LIGA devices. Standard LIGA processes can only fabricate microparts that are essentially extrusions of 2-D designs. In other words, standard LIGA parts are currently prismatic. In order to microfabricate a cantilevered part, prismatic LIGA components are microfabricated separately and glued or diffusion bonded together in the proper orientation. Such post fabrication assembly raises the cost of the device considerably and results in cantilevered parts having discontinuities between the glued or diffusion bonded layers. Previous attempts at manufacturing cantilevered multi-layered LIGA microstructures, such as those discussed in U.S. Pat. No. 5,378,583 to Guckel et al., have been significantly hampered by the high interfacial stresses between the exposed and unexposed areas of photoresist that leads to extensive crack propagation when the exposed areas are developed.
U.S. Pat. No. 5,190,637 to Guckel et al. discloses a method of producing a cantilevered multi-layer microstructures by utilizing a sacrificial metal layer to surround each layer of microstructure once it has been formed. However, the formation of microstructures using this method requires a separate time-consuming electroplating step to be performed at each level, and a difficult final etching step to be performed in order to remove the sacrificial metal, thereby increasing the complexity and expense of the metal microstructure fabrication process. There is, therefore, a need in the art for a fast and efficient method of manufacturing continuous cantilevered multilevel LIGA microstructures that avoids the problems associated with interfacial stresses and time-consuming metal etching techniques.
SUMMARY OF THE INVENTION
Accordingly, the invention is directed to the aforementioned need in the art and provides a method that reduces the occurrence of stress-induced cracking when making continuous multilevel cantilevered LIGA microstructures of micron or submicron dimensions and eliminates the need for time-consuming metal etching processes.
It is another object of the invention to provide such a method that involves forming a first microstructure on the plating base, covering the first microstructure with a conductive polymer, sealing the conductive polymer with a metal layer, and forming a second microstructure on the first microstructure.
It is still a further object of the invention to provide novel microcomponents fabricated using the methodology disclosed and claimed herein.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
In one embodiment, then, the invention pertains to a method of forming multi-layer microstructures. In the method a first layer microstructure is established by electroplating a metal into the recesses of an exposed and developed first polymer layer and planarizing the surface of the electroplated metal to form a substantially flat and uniform surface extending across the first layer microstructure and the remaining first polymer layer. The remaining first polymer layer is then removed in its entirety. A conductive polymer layer is deposited over the first layer microstructure. The conducting polymer mitigates stress induced cracking and serves as a plating base for any cantilevered portions of the second level microstructure. The exposed surface of the conducting polymer layer is machined down to expose the surface of the first layer microstructure, forming a substantially flat, uniform surface extending across the first layer microstructure and conducting polymer layer. Machining also allows the thickness of the first layer of metal to be closely controlled.
After the first layer microstructure and conducting polymer layer have been machined down to the desired height, a metal sealing layer is deposited onto the surface of the first layer microstructure and conducting polymer layer. This metal sealing layer prevents the chemical developer used in forming the subsequent layers of microstructure from attacking the conductive polymer layer. Additional layers of microstructure are then formed using the same procedure outlined above. i.e., a second polymer layer is deposited on the metal sealing layer, areas of the second polymer layer are exposed and developed. Prior to electroplating, the areas of metal sealing layer that have been uncovered by the development of the exposed areas of the second polymer layer are also removed. The removal of areas of the metal sealing layer allows the electroplated microstructures of the second layer to form directly onto the surface of the first layer microstructure or, when the microstructure is cantilevered, onto the surface of the conductive polymer.
Using the above method, a multi-layered microstructure may be quickly and economically formed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cantilevered multilevel LIGA devices and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cantilevered multilevel LIGA devices and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cantilevered multilevel LIGA devices and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2970544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.