Electricity: measuring and testing – Of geophysical surface or subsurface in situ – For small object detection or location
Reexamination Certificate
1999-03-08
2001-12-25
Brown, Glenn W. (Department: 2862)
Electricity: measuring and testing
Of geophysical surface or subsurface in situ
For small object detection or location
C324S337000, C250S392000
Reexamination Certificate
active
06333631
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to an apparatus and process for the detection of mines. More specifically a robotic vehicle is provided with an articulated arm for supporting mine-detecting and range-finding sensors.
BACKGROUND OF THE INVENTION
A number of technologies have been applied to the ground-based detection of landmines. In the simplest instance is the individual armed with only a hand-held prodder for probing the ground and relying upon their experience to gauge the level of hazard associated with a contacted object. Hand-held electronic mine detectors are an improvement in but, the proximity of the operator to the detector still presents a risk. At the other extreme are complex and expensive remote-controlled vehicles with sensor arrays preceded by a preconditioning flail vehicle to remove anti-personnel mines. These vehicle mounted sensor detectors are ideal for level terrain, particularly road services.
Vehicle-mounted detectors are rapid but are expensive and operate poorly in irregular and generally difficult terrain and tend to utilize at least one sensor which contacts the ground which can trigger a mine if not pre-cleared. Hand-held detectors are intended for and are used in terrain that vehicle-mounted detectors cannot reach.
It is known that in order to decommission any terrain and render it safe for passage of personnel or resumption of regular human activity, all landmines must be removed. This typically needs to be accomplished with painstaking and hazardous hand-work.
Hand-held mine or metal detectors typically comprise a component box with a handle, a rigid shaft extending towards the ground, and a sensor located at the end of the rigid shaft. The operator typically holds the detector used by the handle and swings the sensor over the ground in a left right sweeping action as the operator walks forward. The advantages of the hand-held detectors include the ability to sweep the ground profile with the detector head spaced closely from the ground for optimal detection, yet the operator strives to prevent contacting either the ground or any objects on or in the ground. The operators shoulder, arm and wrist provide great flexibility in maintaining this sensor spacing. This flexibility permits a human operator to very carefully and precisely sweep and area regardless of its terrain.
Further, the operator is able to vary the width of the sweep in order to adapt to a particular situation or terrain. The disadvantages include is that the hand held method is slow, personnel intensive, tiring, hazardous and obviously stressful for the operator.
It is an objective therefore to provide a mine detection system which implements the flexibility of the hand-held system, provides faster and positive detection of mines and incorporates some of the safer and more rapid mechanized scanning capabilities of the vehicle mounted systems.
SUMMARY OF THE INVENTION
Generally, a small, and simple articulated robotic scanner is provided which is capable both of performing the effective non-contacting and efficient ground-sweeping technique usually performed by human personnel and hand-held mine detectors, yet does so Without the imposition of fatigue and risk upon personnel. The apparatus, while more complex than either a hand prodder or hand-held metal detector, is significantly less expensive or complex than the multisensor, vehicle-mounted apparatus. Additionally, it can access and decommission terrain that the larger vehicles cannot.
Generally, the robotic scanner comprises an articulated arm having one or more mine detectors mounted at its distal end. The arm is mounted to any locomotion device, such as a small robot. The arm is used in an automatic or semi-automatic fashion for repetitively sweeping the mine detector in ever forward advancing side-o-side arcs over the terrain. The sensors are maintained in closely spaced relationship to the ground for optimal mine detection. The spacing of the detector to the ground is determined with a combination of terrain range-finding sensors and a controller for maintaining the relative position of the ground and the mine detector. Accordingly, while the mine detector is swept over the terrain, its position is dynamically adjusted to maintain a constant separation from the ground without contacting the ground or any objects.
In a broad apparatus aspect, mine-detecting apparatus is provided for mounting to a vehicle travelling forward to traversing the ground comprising:
a detector arm connected to the vehicle at one end and to a mine detector at the other;
a joint having two or more rotational axes for connecting the detector arm to the vehicle, said joint being robotic-actuated for enabling tilt and side-to-side panning movement of the detector arm;
range-finding sensors for determining the distance of the range-finding sensors to the ground ahead of the panning mine detector;
positional sensors for tracking the position of the mine detector
a first controller for analyzing the range-finding sensors and positional sensors for determining the relative location of the mine detector and the ground; and
a second controller for dynamically adjusting the tilt of the detector arm and position of the mine detector so as to continually ensure it is spaced from the ground as it is panned over the ground.
In a preferred embodiment, the mine detector is a metal detector and accordingly, the range-finding sensors are supported on a second arm for separating the potentially metal-containing range-finding sensors from the metal detector. More preferably, the second arm can be repositioned as necessary to positioned it above, to the side and ahead of the panning metal detector.
Further, it is preferable to use two or more range-finding sensors such as a laser range-finder and ultrasonic sensors in combination to improve confidence levels and respond to a greater number of environmental factors. More preferably, control is enhanced if the detector arm is extendible for performing a series of side-to-side pans rather than continually repositioning the vehicle.
The apparatus enables practice of a novel method of mine detection broadly comprising the steps of
providing a vehicle having an articulated member mounted to the vehicle and having a mine detector mounted at the far end;
continuously determining the spacing between the mine detector and the ground;
actuating the member to pan the mine detector laterally from side to side to scan a arcuate region; all the while
adjusting the position of the mine detector so as to maintain a space between the mine detector and the ground; and
advancing the articulated member as necessary to scan a new arcuate region.
REFERENCES:
patent: 4021725 (1977-05-01), Krikland
patent: 5452639 (1995-09-01), Aulenbacher et al.
patent: 5680048 (1997-10-01), Wollny
patent: 5712441 (1998-01-01), Grunewald
patent: 5869967 (1999-02-01), Straus
patent: 5942899 (1999-08-01), Shrekenhamer
patent: 6026135 (2000-02-01), McFee et al.
A. Carruthers, R. Eirich, Y. Das and A. Kramer, “Project JINGOSS-a tele-operated metallic mine detector (U)”, 1993 DND Workshop on Advanced Technologies in Knowledge Based Systems and Robotics, Ottawa, Ontario, Canada, Nov. 14-17, 1993.
J.E. McFee and A. Carruthers, “A multisensor mine detector for peacekeeping-Improved Landmine Detector Concept (ILDC)”, invited paper, Proc. SPIE Conference on Detection and Remediation Technologies for Mines and Mine-Like Targets, vol. 2765, Orlando, Florida, Apr. 9-12, 1996.
B.M. Cain and T.V. Meidinger, “The Improved Landmine Detection System”, Proc. IEE Conference on Detection of Abandoned Landmines, Edinburgh, United Kingdom, Oct. 7-9, 1996.
T. Hanshaw and D.M. Reidy, “Operational Standoff Mine Detection: Its Technology and Application”, Proc. SPIE Conference on Detection and Remediation Technologies for Mines and Mine-Like Targets, vol. 3079, Orlando, Florida, Apr. 21-24, 1997.
T.J. Gorman, “Analysis of sensor integration of the Integrated Ground Mobile Mine Detection Testbed (IGMMDT)”, Proc. SPIE Conference on Detection and Remediation Technologies for
Das Yogadish
Goldenberg Andrew
Kircanski Nenad
Russell Kevin
Brown Glenn W.
Millen White Zelano & Branigan P.C.
Minister of National Defence of Her Majesty's Canadian Gove
Zaveri S.
LandOfFree
Cantilevered manipulator for autonomous non-contact scanning... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cantilevered manipulator for autonomous non-contact scanning..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cantilevered manipulator for autonomous non-contact scanning... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2575678