Canted longitudinal patterned exchange biased dual-stripe...

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S603080, C029S603140, C029S603150, C148S108000, C360S112000

Reexamination Certificate

active

06230390

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods for fabricating magnetic sensor elements. More particularly, the present invention relates to methods for fabricating dual stripe magnetoresistive (DSMR) sensor elements with enhanced signal amplitudes.
2. Description of the Related Art
The recent and continuing advances in computer and information technology have been made possible not only by the correlating advances in the functionality, reliability and speed of semiconductor integrated circuits, but also by the correlating advances in the storage density and reliability of direct access storage devices (DASDs) employed in digitally encoded magnetic data storage and retrieval.
Storage density of direct access storage devices (DASDs) is typically determined as areal storage density of a magnetic data storage medium formed upon a rotating magnetic data storage disk within a direct access storage device (DASD) magnetic data storage enclosure. The areal storage density of the magnetic data storage medium is determined largely by the track width, the track spacing and the linear magnetic domain density within the magnetic data storage medium. The track width, the track spacing and the linear magnetic domain density within the magnetic data storage medium are in turn determined by several principal factors, including but not limited to: (1) the magnetic read-write characteristics of a magnetic read-write head employed in reading and writing digitally encoded magnetic data from and into the magnetic data storage medium; (2) the magnetic domain characteristics of the magnetic data storage medium; and (3) the separation distance of the magnetic read-write head from the magnetic data storage medium.
With regard to the magnetic read-write characteristics of magnetic read-write heads employed in reading and writing digitally encoded magnetic data from and into a magnetic data storage medium, it is known in the art of magnetic read-write head fabrication that magnetoresistive (MR) sensor elements employed within magnetoresistive (MR) read-write heads are generally superior to other types of magnetic sensor elements when employed in retrieving digitally encoded magnetic data from a magnetic data storage medium. In that regard, magnetoresistive (MR) sensor elements are generally regarded as superior since magnetoresistive (MR) sensor elements are known in the art to provide high output digital read signal amplitudes, with good linear resolution, independent of the relative velocity of a magnetic data storage medium with respect to a magnetoresistive (MR) read-write head having the magnetoresistive (MR) sensor element incorporated therein. Within the general category of magnetoresistive (MR) sensor elements, dual stripe magnetoresistive (DSMR) sensor elements, and in particular longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor elements, are presently of considerable interest insofar as the multiple magnetically biased magnetoresistive (MR) layers employed within longitudinally patterned exchange biased dual stripe magnetoresistive (DSMR) sensor elements typically provide enhanced magnetic read signal amplitude and fidelity in comparison with, for example, soft adjacent layer (SAL) magnetoresistive (MR) sensor elements.
While longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor elements are thus desirable within the art of digitally encoded magnetic data storage and retrieval, longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor elements are nonetheless not entirely without problems within the art of digitally encoded magnetic data storage and retrieval. In particular, as a data track width within a magnetic medium employed within digitally encoded magnetic data storage and retrieval decreases, it becomes increasingly important that a read track width within a longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor element employed in reading the data within the data track be uniformly magnetically biased. Uniform magnetic bias profiles are desirable within read track widths of longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor elements since such uniform magnetic bias profiles provide for optimal magnetic read signal amplitudes within such longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor elements.
It is thus towards the goal of providing, for use within magnetic data storage and retrieval, a longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor element with a uniform magnetic bias profile across a read track width of the longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor element that the present invention is most generally directed.
Various methods and resultant magnetic sensor element structures have been disclosed in the art of magnetic sensor element fabrication for forming magnetically biased magnetic sensor elements with enhanced functionality, enhanced reliability or other desirable properties.
For example, general considerations pertinent to both intrinsic and extrinsic longitudinal magnetic biasing of magnetoresistive (MR) layers within magnetoresistive (MR) sensor elements, including but not limited to dual stripe magnetoresistive (DSMR) sensor elements, are disclosed within Ashar, Magnetic Disk Drive Technology: Heads, Media, Channel, Interfaces and Integration, IEEE, Inc., New York, 1997, pp. 142-46.
In addition, several disclosures specifically directed towards improved magnetic biasing within single stripe magnetoresistive (SSMR) sensor elements may also be found within the art of magnetoresistive (MR) sensor element fabrication. Included within such disclosures are: (1) Kuriyama, in U.S. Pat. No. 5,592,082 (a single stripe magnetoresistive (SSMR) sensor element employing a magnetoresistive (MR) layer having formed thereupon a series of patterned permanent magnet biasing layers which are formed at an angle of about 45 degrees with respect to a major axis of the magnetoresistive (MR) layer to attenuate noise within the magnetoresistive (MR) layer); and (2) Kung et al., in U.S. Pat. No. 5,680,281 (a single stripe magnetoresistive (MR) sensor element which may be magnetically biased employing only a uniaxial anisotropy of a magnetoresistive (MR) layer and a shape anisotropy of an active region of the magnetoresistive (MR) layer).
Further, several disclosures specifically directed towards improved magnetic biasing within soft adjacent layer (SAL) magnetoresistive (MR) sensor elements may also be found within the art of magnetic sensor element fabrication. Included within such disclosures are: (1) Chen et al., in U.S. Pat. No. 5,285,339 (a soft adjacent layer (SAL) magnetoresistive (MR) sensor element formed employing a magnetoresistive (MR) layer formed from a magnetic material having a low uniaxial magnetic anisotropy separated from a magnetic biasing soft adjacent layer (SAL) formed from a magnetic material having a high uniaxial magnetic anisotropy); (2) Chen et al., in U.S. Pat. No. 5,325,253 (a soft adjacent layer (SAL) magnetoresistive (MR) sensor element employing a pair of patterned antiferromagnetic magnetic biasing layers formed upon a pair of opposite ends of a magnetoresistive (MR) layer, where the pair of patterned antiferromagnetic magnetic biasing layers has a canted exchange bias field with respect to the magnetoresistive (MR) layer); and (3) Gill et al., in U.S. Pat. No. 5,508,866 (a soft adjacent layer (SAL) magnetoresistive (MR) sensor element where the soft adjacent layer (SAL) is further magnetically biased and stabilized by an antiferromagnetic magnetic bias layer of nickel oxide).
Finally, several disclosures which are directed more specifically towards dual stripe magnetoresistive (DSMR) sensor elements, and may include longitudinal magnetic biasing considerations of such dual stripe magnetoresistive (DSMR) sensor elements, may also be found within the art of magnetore

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Canted longitudinal patterned exchange biased dual-stripe... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Canted longitudinal patterned exchange biased dual-stripe..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Canted longitudinal patterned exchange biased dual-stripe... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2569164

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.