Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part
Reexamination Certificate
2002-01-25
2004-05-11
McElwain, Elizabeth F. (Department: 1638)
Multicellular living organisms and unmodified parts thereof and
Plant, seedling, plant seed, or plant part, per se
Higher plant, seedling, plant seed, or plant part
C800S260000, C800S274000, C435S410000, C435S430000
Reexamination Certificate
active
06734345
ABSTRACT:
FIELD OF THE INVENTION
The invention is in the field of
Brassica napus
breeding (i.e., canola breeding), specifically relating to the canola line designated 44A04.
BACKGROUND OF THE INVENTION
The present invention relates to a novel rapeseed line designated 44A04 is which is the result of years of careful breeding and selection. Since such line is of high quality and possesses a relatively low level of erucic acid in the vegetable oil component and a relatively low level of glucosinolate content in the meal component. It can be termed “canola” in accordance with the terminology commonly used by plant scientists.
The goal of plant breeding is to combine in a single variety or hybrid various desirable traits. For field crops, these traits may include resistance to diseases and insects, tolerance to heat and drought, reducing the time to crop maturity, greater yield, and better agronomic quality. With mechanical harvesting of many crops, uniformity of plant characteristics such as germination and stand establishment, growth rate, maturity, and plant and pod height, is important.
Field crops are bred through techniques that take advantage of the plant's method of pollination. A plant is self-pollinated if pollen from one flower is transferred to the same or another flower of the same plant. A plant is sib-pollinated when individuals within the same family or line are used for pollination. A plant is cross-pollinated if the pollen comes from a flower on a different plant from a different family or line. The term “cross-pollination” used herein does not include self-pollination or sib-pollination.
The creation of new superior, agronomically sound, and stable high yielding cultivars of many plant types including canola has posed an ongoing challenge to plant breeders. In the practical application of a chosen breeding program, the breeder often initially selects and crosses two or more parental lines, followed by repeated selfing and selection, thereby producing many unique genetic combinations. The breeder can theoretically generate billions of different genetic combinations via crossing, selfing and mutagenesis. However, the breeder commonly has no direct control at the cellular level of the plant. Therefore, two breeders will never independently develop the same line having the same canola traits.
Each year, the plant breeder selects the germplasm to advance to the next generation. This germplasm is grown under unique and different geographical, climatic and soil conditions, and further selections are then made during and at the end of the growing season. The characteristics of the lines developed are incapable of prediction in advance. This unpredictability is because the selection occurs in unique environments, with no control at the DNA level (using conventional breeding procedures), and with millions of different possible genetic combinations being generated. A breeder of ordinary skill cannot predict in advance the final resulting lines that are to be developed, except possibly in a very gross and general fashion. Even the same breeder is incapable of producing the same line twice by using the same original parents and the same selection techniques. This unpredictability commonly results in the expenditure of large research monies and effort to develop a new and superior canola line.
Canola breeding programs utilize techniques such as mass and recurrent selection, backcrossing, pedigree breeding and haploidy. For a general description of rapeseed and Canola breeding, see R. K. Downey and G. F. W. Rakow, 1987: Rapeseed and Mustard. In: Fehr, W. R. (ed.), Principles of Cultivar Development, 437-486. New York: Macmillan and Co.; Thompson, K. F., 1983: Breeding winter oilseed rape
Brassica napus
. Advances in Applied Biology 7: 1-104; and Oilseed Rape, Ward, et. al., Farming Press Ltd. , Wharefedale Road, Ipswich, Suffolk (1985), each of which are hereby incorporated by reference.
Recurrent selection is used to improve populations of either self- or cross-pollinating Brassica. Through recurrent selection, a genetically variable population of heterozygous individuals is created by intercrossing several different parents. The best plants are selected based on individual superiority, outstanding progeny, or excellent combining ability. The selected plants are intercrossed to produce a new population in which further cycles of selection are continued. Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. Breeding programs use backcross breeding to transfer genes for a simply inherited, highly heritable trait into another line that serves as the recurrent parent. The source of the trait to be transferred is called the donor parent. After the initial cross, individual plants possessing the desired trait of the donor parent are selected and are crossed (backcrossed) to the recurrent parent for several generations. The resulting plant is expected to have the attributes of the recurrent parent and the desirable trait transferred from the donor parent. This approach has been used for breeding disease resistant phenotypes of many plant species, and has been used to transfer low erucic acid and low glucosinolate content into lines and breeding populations of Brassica.
Pedigree breeding and recurrent selection breeding methods are used to develop lines from breeding populations. Pedigree breeding starts with the crossing of two genotypes, each of which may have one or more desirable characteristics that is lacking in the other or which complements the other. If the two original parents do not provide all of the desired characteristics, other sources can be included in the breeding population. In the pedigree method, superior plants are selfed and selected in successive generations. In the succeeding generations the heterozygous condition gives way to homogeneous lines as a result of self-pollination and selection. Typically in the pedigree method of breeding five or more generations of selfing and selection is practiced: F
1
to F
2
; F
2
to F
3
; F
3
to F
4
; F
4
to F
5
, etc. For example, two parents that are believed to possess favorable complementary traits are crossed to produce an F
1
. An F
2
population is produced by selfing one or several F
1
's or by intercrossing two F
1
's (i.e., sib mating). Selection of the best individuals may begin in the F
2
population, and beginning in the F
3
the best individuals in the best families are selected. Replicated testing of families can begin in the F
4
generation to improve the effectiveness of selection for traits with low heritability. At an advanced stage of inbreeding (i.e., F
6
and F
7
), the best lines or mixtures of phenotypically similar lines commonly are tested for potential release as new cultivars. Backcrossing may be used in conjunction with pedigree breeding; for example, a combination of backcrossing and pedigree breeding with recurrent selection has been used to incorporate blackleg resistance into certain cultivars of
Brassica napus.
Plants that have been self-pollinated and selected for type for many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny. If desired, the haploidy method can also be used to extract homogeneous lines. A cross between two different homozygous lines produces a uniform population of hybrid plants that may be heterozygous for many gene loci. A cross of two plants each heterozygous at a number of gene loci will produce a population of hybrid plants that differ genetically and will not be uniform.
The choice of breeding or selection methods depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F
1
hybrid line, open pollinated variety, etc.) A true breeding homozygous line can also be used as a parental line (inbred line) in a commercial hybrid. If the line is being developed as an inbred for use in a hybrid, an appropriate pollination control system should be incor
Grombacher Alan Wall
Patel Jayantilal D.
McElwain Elizabeth F.
McKee Voorhees & Sease, P.L.C.
Pioneer Hi-Bred International , Inc.
LandOfFree
Canola line 44A04 does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Canola line 44A04, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Canola line 44A04 will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3204519