Canister for inventorying susceptability test devices in an...

Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S287400, C435S809000, C422S105000

Reexamination Certificate

active

06632654

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a reagent container for use in an automated microbiological analyzer for determining an antibiotic effective in controlling growth of the microorganism. More particularly, the present invention provides an antibiotic reagent canister with features than enable automated handling of the reagent container as well as features than facilitate storage and secure dispensing of a reagent container from within a reagent canister maintained in an environmentally secure chamber on the analyzer.
BACKGROUND OF THE INVENTION
Various types of tests related to patient diagnosis and therapy can be performed by analysis of a biological sample. Biological samples containing the patient's microorganisms are taken from a patient's infections, bodily fluids or abscesses and are typically placed in test panels or arrays, combined with various reagents, incubated, and analyzed to aid in treatment of the patient. Automated biochemical analyzers have been developed to meet the needs of health care facilities and other institutions to facilitate analysis of patient samples and to improve the accuracy and reliability of assay results when compared to analysis using manual operations. However, with ever changing bacterial genera and newly discovered antibiotics, the demand for biochemical testing has increased in both complexity and in volume. Additionally, commercial analyzers typically require a user to employ a test panel having predetermined assay types thereon regardless of whether or not all of the predetermined assay types have been requested by a physician. Because of these greater demands in conjunction with the expense and scarcity of floor space within health care institutions and the pressure to provide clinical results at lower costs, it has become important to randomly perform different types of biochemical tests within a highly automated and compact analyzer that operates at high through-put with minimal clinician attention.
An important family of automated microbiological analyzers function as a diagnostic tool for determining both the identity of an infecting microorganism and of an antibiotic effective in controlling growth of the microorganism. In performing these tests, identification and in vitro antimicrobic susceptibility patterns of microorganisms isolated from biological samples are ascertained. Such analyzers have historically placed a small sample to be tested into a plurality of small sample test wells in panels or arrays that typically contain different enzyme substrates or antimicrobics in serial dilutions. Identification (ID) of microorganisms and of Minimum Inhibitory Concentrations (MIC) of an antibiotic effective against the microorganism are determined by color changes, fluorescence changes, or the degree of cloudiness (turbidity) in the sample test wells created in the arrays. By examining the signal patterns generated, both AST and ID measurements and subsequent analysis are performed by computer controlled microbiological analyzers to provide advantages in reproducibility, reduction in processing time, avoidance of transcription errors and standardization for all tests run in the laboratory.
In ID testing of a microorganism, a standardized dilution of the patient's microorganism sample, known as an inoculum, is first prepared in order to provide a bacterial or cellular suspension having a predetermined known concentration. This inoculum is placed in an analytical test array or panel having a number of microwells or alternately into a cuvette rotor assembly having an inoculum receiving well from where sample is distributed by centrifugal force to a number of test wells or chambers at the periphery of the rotor. The test. wells contain predetermined identification media consisting of enzyme substrates and/or growth inhibitors, which, depending on the species of microorganism present, will exhibit color changes, increases in turbidity or changes in fluorescence after incubation. For instance, a bacterial genera may be identified on the basis of pH changes, its ability to utilize different carbon compounds, or growth in the presence of antimicrobial agents in a test well. Some tests require addition of reagents to detect products of bacterial metabolism while others are self-indicating. In conventional chromogenic panels, the inoculum is incubated some 18-24 hours before analysis is completed. Alternately, microorganism ID may be accomplished using rapid fluorogenic test arrays employing growth-independent means in which preformed enzyme substrates are placed in the test wells and fluorogenic tests based on the detection of hydrolysis of fluorogenic substrates, pH changes following substrate utilization, production of specific metabolic substrates and the rate of production of specific metabolic byproducts are made after about 2 hours of incubation. In both cases, by examining the reaction of the inoculum and reagents after incubation and over a period of time, or lack thereof, and comparing that reaction with that of known species, the types of microorganisms can be identified. Importantly, a large number of different substrates or other reagents must be available in ID testing of an unknown microorganism because the microorganism will be more or less different sensitive to different substrates and reagents. In an automated analyzer, this is achieved by providing a variety of ID test panels, each pre-loaded with substrates and reagents that are selected to produce a known pattern of measurable reaction signals for various microorganisms.
The use of microbiological test trays and the techniques employed in MIC tests, also known as antibiotic susceptibility testing, AST, of microorganisms are also well known. AST tests are essentially broth dilution susceptibility tests using wells filled with inoculum and a growth broth, called herein a inoculum-broth solution, and increasing concentrations of a number of different antibiotics, or antimicrobial agents as used in different AST tests to determine which antimicrobial agents are most effective against a particular microorganism. The different antimicrobial agents are typically diluted in Mueller-Hinton broth with calcium and magnesium in chromogenic panels or diluted in autoclaved water with a fluorogenic compound in fluorogenic panels. The antimicrobials are diluted to concentrations that include those of clinical interest. After incubation, the turbidity or fluorescence will be less or non-existent in wells where growth has been inhibited by the antimicrobics in those wells. The analyzer compares each test well reading with a threshold value. The threshold value is a fixed number corresponding to a certain percentage of relative absorbency or fluorescence which corresponds to clinically significant growth. The MIC of each antimicrobial agent is measured either directly as visible growth, or indirectly as an increase in fluorescence.
Important challenges that must be taken into consideration when designing cost-effective, automated biochemical analyzers include the volume of reagents required per test and the cost of the disposable test panel, array or, in certain designs, a centrifugal test rotor. Because they are small and may be produced using mass-production, plastic injection molding techniques, it is advantageous to use very small sized, test arrays having a number of microwells for performing AST tests in order to facilitate automatic handling and minimize the expense of a disposable test array. AST test arrays typically consist of a plurality of adjacent microwells aligned in some sort of an array that function as reaction vessels for the above mentioned biochemical reactions involving a solid phase media and a liquid phase containing a sample to be tested. An aliquot of the sample is placed in each microwell along with appropriate antibiotic reagents. AST testing usually requires that the test trays be incubated at a controlled temperature for a period of time so that an observable reaction between the sample and reagent occurs; at predetermined

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Canister for inventorying susceptability test devices in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Canister for inventorying susceptability test devices in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Canister for inventorying susceptability test devices in an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3138135

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.