Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2001-08-09
2003-10-21
Goldberg, Jerome D. (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
Reexamination Certificate
active
06635666
ABSTRACT:
SUMMARY OF THE INVENTION
The invention relates to the treatment of a proliferative disease, especially according to certain treatment regimens using an epothilone, especially epothilone B; preferably of a gastro-intestinal tumor, more preferably (1) a tumor of the colon and/or the rectum (colorectal tumor), especially if it is refractory to a (meaning at least one) representative of the taxane class of anti-cancer agents, in particular TAXOL® (paclitaxel in formulated form for clinical use), and/or at least one standard treatment with an other chemotherapeutic, especially 5-fluorouracil; (2) a tumor of the genitourinary tract, more preferably a tumor of the prostate, including primary and metastatic tumors, especially if refractory to hormone treatment (“hormone refractory prostate cancer”) and/or treatment with other standard chemotherapeutics; (3) an epidermoid tumor, more preferably an epidermoid head and neck tumor, most preferably a mouth tumor; (4) a lung tumor, more preferably a non-small cell lung tumor, especially any of these tumors that is refractory to treatment with one or more other chemotherapeutics (especially due to multidrug resistance), especially to treatment with a member of the taxane class of anti-cancer agents, in parti-cular TAXOL®; or (5) a breast tumor, more preferably one that is multidrug resistant, especially refractory to treatment with a member of the taxane class of anti-cancer agents, in particular TAXOL®; relating especially also to the treatment of a multidrug resistant lung tumor (preferably a non-small cell lung tumor), a multidrug resistant breast tumor, or a multidrug resistant epidermoid tumor, or in a broader sense of the invention to a treatment schedule for the treatment of an aforementioned or (in a broader sense of the invention) any other tumor, especially if it is refractory to one or more chemotherapeutics, especially multidrug resistant and/or TAXOL® refractory), such as a melanoma, ovarian cancer, pancreas cancer, neuroblastoma, head and neck cancer or bladder cancer, or in a broader sense renal, brain or gastric cancer; by administration of an epothilone as a cytotoxic agent, especially epothilone B; the term “treatment” also encompassing (i) a method of treatment for (=for treating of said disease comprising administration of said cytotoxic agent (preferably an epothilone, especially epothilone B, in each case preferably together with a pharmaceutically acceptable carrier) to a warm-blooded animal, especially if in need of such treatment, in a therapeutically effective amount, in at least one treatment; (ii) the use of said cytotoxic agent, for the treatment of a proliferative disease; (iii) the use of said cytotoxic agent for the manufacture of a pharmaceutical preparation for the treatment of said proliferative disease (comprising admixing said cytotoxic agent with a pharmaceutically acceptable carrier); (iv) a pharmaceutical preparation comprising a dose of said cytotoxic agent that is appropriate for the treatment of said proliferative disease. The invention is, in a preferred embodiment, directed to the treatment of patients or patient groups where other treatments, especially standard treatment with an other chemotherapeutic, especially 5-fluorouracil; or therapy with members of the taxane class of anti-cancer agents, such as TAXOL®, have failed.
BACKGROUND OF THE INVENTION
Cancer still represents a major unmet medical need. Initial treatment of the disease is often surgery, radiation treatment or the combination, but recurrent (metastatic) disease is common. Chemotherapeutic treatments for most cancers are generally not curative, but only delay disease progression. Commonly, tumors and their metastases become refractory to chemotherapy, in an event known as development of multidrug resistance. In many cases, tumors are inherently resistant to some classes of chemotherapeutic agents [see DeVita V. T., Principles of Cancer Management: Chemotherapy. In: Cancer. Principles and Practice of Oncology. DeVita V. T. et al (eds.), 5th edition, Lippincott-Raven, Philadelphia, N.Y. (1977), pp. 333-347; or Cleton, F. J., Chemotherapy: general aspects. In: Oxford Textbook of Oncology; Peckham, M., et al, Oxford University Press, Oxford, N.Y., Tokyo (1995), Vol. 1, pp.445-453]. This is, for example, the case for lung tumors, especially non-small cell lung carcinoma, or also for epidermoid tumors, like epidermoid head and neck, especially mouth, tumors, or also for breast tumors. Other mechanisms why tumors are not treatable (are refractory to treatment) can be, for example, the presence of tubulin mutations or glutathione mediated mechanisms.
Intestinal, especially colorectal, cancer defines a special case of the unmet medical needs in cancer treatment. Initial treatment of the disease is often surgery, radiation treatment or the combination, but recurrent (metastatic) disease is common. First-line chemotherapeutic treatments for recurrent colorectal cancer include 5-fluorouracil. But this treatment provides at best delay of disease progression as the tumors usually become refractory to treatment. Chemotherapy of this refractory stage of disease involves other classical cytotoxic agents, but are all considered inadequate [see Cohen et al., Cancer of the colon. In: Cancer. Principles and Practice of Oncology; DeVita et al. (eds.), 5th edition, Lippincott Raven. Philadelphia, New York 1997, pp. 1144-1197; or Rowinsky, Ann. Rev. Med. 48, 353-74 (1997)].
Also for cancer of the genitourinary tract, especially prostate cancer, a further unmet medical need, initial treatment is as mentioned above for colorectal cancer, showing similar problems. First-line chemotherapeutic treatment for recurrent prostate cancer includes anti-androgens, and the recurrence is frequently androgen-dependent. But this treatment provides only delay of disease progression as the tumors almost always become refractory to anti-androgens within 6 months to 2 years (hormone-refractory prostate tumors). Chemotherapy of this anti-androgen refractory stage of diseases involves mitoxantrone or other classical anticancer cytotoxic agents, but all are considered as inadequate [see Oesterling et al., Cancer of the prostate. In: Cancer. Principles and Practice of Oncology. DeVita, V. T., et al. (eds.), 5th edition, Lippincott-Raven, Philadelphia, New York 1997, pp 1322-86; Sternberg, Cancers of the genitourinary tract. In: Cavalli et al. (eds.), Textbook of Medical Oncology; or Roth, B. J., Semin. Oncol. 23(6 Suppl. 14), 49-55 (1996)].
Among cytotoxic agents for the treatment of tumors, TAXOL® (paclitaxel), a microtubule stabilizing agent, has become a very important compound with a remarkable economic success [see Rowinsky E. K., The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents; Ann. Rev. Med. 48, 353-374 (1997)].
However, TAXOL® has a number of disadvantages. Especially its extremely low solubility in water represents a severe problem. It has become necessary to administer TAXOL® in a formulation with Cremophor EL® (polyoxyethylated castor oil; BASF, Ludwigshafen, Germany) which has severe side effects, causing inter alia allergic reactions that in one case even were reported to have led to the death of a patient. More severely, certain tumor types are known to be refractory to treatment with TAXOL® even when the drug is administered as front-line therapy, or the tumors develop resistance to TAXOL® after multiple cycles of exposure.
Although the taxane class of antimicrotubule anti-cancer agents has been hailed as the “perhaps most important addition to the chemotherapeutic armamentarium against cancer over the past several decades” [see Rowinsky E. K., Ann. Rev. Med. 48, 353-374 (1997)] and despite the commercial success of TAXOL®, there remain limitations to TAXOL®'s efficacy. TAXOL® treatment is associated with a number of significant side effects and some major classes of solid tumors, namely colon and prostate, are poorly responsive to this compound (see Rowin
Cohen Pamela
Litchman Manuel
O'Reilly Terence
Wartmann Markus
Dohmann George R.
Goldberg Jerome D.
Novartis AG
LandOfFree
Cancer treatment with epothilones does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cancer treatment with epothilones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cancer treatment with epothilones will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3133420