Cancer treatment method utilizing plasmids suitable for IL-2...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023520, C435S320100

Reexamination Certificate

active

06399588

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to plasmids suitable for IL-2 expression, particularly human IL-2 expression, and related methods.
BACKGROUND OF THE INVENTION
Recent advances in our understanding of the biology of the immune system have led to the identification of important modulators of immune responses. Agents known as cytokines mediate many of the immune responses involved in antitumor activity. Several of these cytokines have been produced by recombinant DNA methodology and evaluated for their antitumor effects. In clinical trials, the-administration of cytokines has resulted in objective tumor responses in patients with various types of neoplasms.
Interleukin 2 (IL-2) is an important cytokine in the generation of antitumor immunity. In response to tumor antigens, helper T-cells secrete local amounts of IL-2. This IL-2 acts locally at the site of tumor antigen stimulation to activate cytotoxic T-cells (CTL) and natural killer cells (NK), cellular immune activity which may mediate systemic tumor cell destruction.
Intravenous, intralymphatic, or intralesional administration of IL-2 has resulted in clinically significant responses in some cancer patients. However, severe toxicities (e.g., hypotension, pulmonary edema, prerenal azotemia, cardiac arrhythmias and myocardial infarction) limit the dose and efficacy of systemic IL-2 administration. The toxicity of systemically administered cytokines is not surprising since these agents mediate local cellular interactions and they are normally secreted in limited quantities in a paracrine fashion.
Investigators are exploring other techniques to evaluate the use of reduced dose levels of IL-2. One protocol is an adoptive transfer approach that involves altering a patient's tumor cells by removing them from the patient, transfecting them with the IL-2 gene using a retroviral vector and then reinjecting them back into the patient. Another approach is to inject an established HLA-A2 positive immunizing cell line (allogeneic matched cells) that has been altered to secrete IL-2.
There is a need for the direct intralesional administration of recombinant genes into established tumors in vivo, to genetically modify them, as they grow in situ, to produce and secrete local amounts of IL-2.
There is also a need to overcome the limitations of an approach where tumor cells are collected, propagated in vitro, modified and selected and then reinjected in vivo.
SUMMARY OF THE INVENTION
According to the invention there is provided a plasmid suitable for IL-2 eukaryotic expression, consisting essentially of: an expression facilitating sequence derived from the immediate-early promoter region of CMV; an expression facilitating sequence derived from the transcriptional termination/polyadenylation signal sequence of the BGH gene; a sequence coding for the eukaryotic expression of an IL-2, characterized as possessing a bioactivity of the complete IL-2, operably linked to both of said expression facilitating sequences, wherein said sequence coding for the expression of an IL-2 is a sequence encoding a mature IL-2 and a non-IL-2 leader peptide that augments eukaryotic expression compared to a wild-type IL-2 leader peptide; and, optionally: a non-mammalian origin of replication; and a sequence operably encoding a selectable marker.
The mature IL-2 may be homologous to wild-type human IL-2.
The non-IL-2 leader peptide may constitute the human IL-2 leader peptide except for the addition of four amino acids.
The non-IL-2 leader peptide may constitute the human IL-2 leader peptide except for the replacement at the 5′ end of Met-Ala-Leu-Trp-Ile-Asp SEQ ID NO:3 for Met-Tyr.
The expression facilitating sequence derived from the immediate-early promoter region of CMV may be a promoter sequence and an intron sequence.
The expression facilitating sequence derived from the transcriptional termination/polyadenylation signal sequence of the BGH gene may be a transcriptional termination and a polyadenylation signal sequence.
The plasmid may possess the functional characteristics of the plasmid encoded by the nucleotide sequence of SEQ ID NO:1.
The plasmid may have the nucleotide sequence of SEQ ID NO:1.
The plasmid may be capable of directing production and secretion of human IL-2 in a human tumor cell.
In another embodiment the invention provides a host cell transformed any of the above plasmids.
In still another embodiment the invention provides a method for producing any of the above plasmids, comprising the steps of: growing bacterial cells containing the plasmid; and recovering the plasmid from the bacterial cells.
In yet another embodiment the invention provides a cassette system adapted for use in the direct intralesional administration of recombinant genes into established tumor cells in vivo, as they grow in situ, to produce and secrete IL-2, consisting essentially of: a transcription unit, encoding IL-2 in a replicon, containing a sequence encoding a non-IL-2 leader peptide constituting the human IL-2 leader peptide except for the replacement at the 5′ end of Met-Ala-Leu-Trp-Ile-Asp SEQ ID NO:3 for Met-Tyr, which sequence encoding said non-IL-2 leader peptide is operably linked to sequence encoding said IL-2.
In a further embodiment the invention provides a vector comprising a DNA sequence operably encoding a protein of interest and a non-IL-2 leader peptide, which non-IL-2 leader peptide constitutes the human IL-2 leader peptide except for the replacement at the 5′ end of Met-Ala-Leu-Trp-Ile-Asp SEQ ID NO:3 for Met-Tyr, wherein the non-IL-2 leader peptide is capable of. augmenting the secretion of the protein in a mammalian cell.
In an additional embodiment the invention provides a pharmaceutical composition comprising the plasmid of Claim
1
in combination with a pharmaceutically acceptable vehicle. The plasmid may complexed to a cationic lipid mixture. The cationic lipid mixture may be DMRIE-DOPE. The DMRIE-DOPE may have a molar ratio of about 1:1. The plasmid to lipid ratio may be about 5:1.
The invention also provides a eukaryotic expression vector for the expression of a DNA sequence in a human tissue, consisting essentially of: a CMV immediate early sequence that contains a CMV promoter and a CMV intron; a sequence whose 5′ end is attached to the 3′ end of the CMV sequence, the sequence encoding a non-IL-2 leader peptide, the peptide constituting the human IL-2 leader peptide except for the replacement at the 5′ end of Met-Ala-Leu-Trp-Ile-Asp SEQ ID NO:3 for Met-Tyr; a cassette whose 5′ end is attached to the 3′ end of the sequence encoding a non-IL-2 leader peptide, the cassette containing a DNA sequence that is to be expressed; and a BGH gene sequence whose 5′ end is attached the 3′ end of the cassette, the BGH sequence containing a transcriptional termination and a polyadenylation signal; and a selectable marker; wherein the vector is capable of replicating in prokaryotes.
In another embodiment the invention provides a method of gene therapy, the improvement comprising administering any of the above plasmids directly into a solid tumor resulting in the local secretion of IL-2.


REFERENCES:
patent: 4738927 (1988-04-01), Taniguchi et al.
patent: 4992367 (1991-02-01), Cullen
patent: 5122458 (1992-06-01), Post et al.
patent: 5168062 (1992-12-01), Stinski
patent: 5229109 (1993-07-01), Grimm et al.
patent: 5250296 (1993-10-01), Ootsu
patent: 5264618 (1993-11-01), Felgner et al.
patent: 5328470 (1994-07-01), Nabel et al.
patent: 5459127 (1995-10-01), Felgner et al.
patent: 5580859 (1996-12-01), Felgner et al.
patent: 5589466 (1996-12-01), Felgner et al.
patent: 5641665 (1997-06-01), Hobart et al.
patent: 5693622 (1997-12-01), Wolff et al.
patent: 5703055 (1997-12-01), Felgner et al.
patent: 219 038 (1987-11-01), None
patent: WO 89/01036 (1989-02-01), None
patent: WO 93/24640 (1993-12-01), None
patent: WO 98/34952 (1998-08-01), None
Alberts, B., et al., “Membrane-bound Ribosomes Are Derived from Free Ribosomes That Are Directed to the ER Membrane by Special Signal Sequwnc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cancer treatment method utilizing plasmids suitable for IL-2... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cancer treatment method utilizing plasmids suitable for IL-2..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cancer treatment method utilizing plasmids suitable for IL-2... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2893935

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.