Cancer treatment method

Surgery – Miscellaneous – Methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S004010, C604S005010

Reexamination Certificate

active

06186146

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to a method for treating an organ of the body afflicted with a disease or tumor by isolating the diseased organ from the general circulation system of the body and treating the afflicted organ in situ without affecting other organs and/or tissues of the host body. In particular, the present invention is directed to a method for treating an isolated disease in an organ of the body, such as a tumor of the kidney, where a therapeutic agent is infused into the diseased organs through the blood supplying that organ and contained therein while eliminating contaminated blood from the organ and maintaining essentially normal blood circulation throughout the host body.
BACKGROUND OF THE INVENTION
Current acceptable medical practice for treating cancer in an organ involves surgical removal of the afflicted organ. In the case of kidney tumors, for example, the afflicted kidney is surgically removed, especially if the tumor is malignant. Statistically, a relatively small percentage—estimated at about 20 to about 30 percent—of patients subject to surgical removal of a tumorous kidney experience sustained, favorable response to this form of therapy. A majority of patients in this category terminate from metastatic (secondary) cancer occurring outside the kidney. If persons suffering from kidney cancer are not permanently benefitted, additional or alternative modes of therapy requiring more radical procedures will have to be developed to act more effectively with the disease at its first presentation so that surgical removal of a diseased organ will not be the only acceptable treatment.
Some organ malignancies have been treated with toxic agents in situ. Some kidney malignancies, for example, have been treated with chemotherapeutic agents and biological agents which are toxic moieties derived from organic sources. However, as with some chemotherapeutic agents, biological agents can not be introduced into the general circulation of the host body in sufficient strength and/or quantity to achieve satisfactory therapeutic response in the diseased organ because their negative, toxic effects on other organs and tissues of the host body rival their positive, therapeutic effect in the diseased organ.
The majority of kidney cancer patients die from metastatic disease. One promising method of treatment involves encouraging the growth of immune cells; i.e., Tumor Infiltrating Lymphocytic cells (TIL cells), within the kidney to attack metastatic tumors. The goal of this treatment is to shrink the kidney tumor prior to removing the kidney.
Another therapeutic procedure for organs with local tumors, sucl as the kidney, includes the surgical removal of tumorous matter from the organ an cultivating TIL cells in sufficient quantity for infusion into the patient for therapeutic treatment of metastatic tumors. The cultured cells may react favorably against both the primary tumor cells and any metastatic cancer cells in the body. However, time is needed in order to cultivate a sufficient quantity of such cells for adequate and effective treatment of a patient and the patient may not have the time required for such cultivation.
In general, treating diseased or tumorous organs with chemotherapeutic agents has not had a dramatic impact. Although certain drugs and biological agents have exhibited considerable activity in some treatment protocols, their effects have been negated by systemic toxicity.
A process for treating a diseased liver by profusing a high concentration of a therapeutic agent through the liver is disclosed in U.S. Pat. No. 5,069,662 to Bodden, et. al. This process includes percutaneously inserting a double balloon catherer into the inferior vena cava of the liver to prepare for delivery of blood flowing between the liver and the heart. A therapeutic agent is fed into the liver through the arterial blood flowing into the liver. The blood vessels carrying blood from the liver are blocked by inflating the balloons in the catherer to prevent contaminated blood from entering the general circulation of the body. The venous blood from the liver contaminated with the therapeutic agent is then withdrawn from the body. The balloons in the double balloon catherer are positioned to span the exit vessels through which blood flows coming out of the liver and are expanded to block the vessel above and below the exit vessels thereby effectively isolating the blood flowing from the treated liver. Contaminated blood is removed from the body through an opening in a lumen provided within the catherer between the expanded balloons. The blood is treated to remove contamination and the cleaned, detoxified blood is then returned to the general circulation of the body.
SUMMARY OF THE INVENTION
The present invention provides a method for treating a disease by stimulating a response in an organ of the body, such as a kidney, in situ in which a therapeutic agent is infused into the organ via the blood entering the organ and in which the blood containing the therapeutic agent is recovered from the organ and removed before the blood enters the general circulation system of the body. This is uniquely accomplished by blocking a section of a major vein without interrupting the flow of blood through the major vein and through the general circulation system of the body.
Thus, the process of the invention provides for the in situ treatment of an organ of the body having a disease or tumor and generally comprises: subjecting an organ of the body having a disease or tumor to an effective amount of a therapeutic agent by infusing said agent via blood entering said organ; creating an isolated section in a major vein spanning the area where the tributary veins connect with said major vein, said major vein and said tributary veins being directly associated with said organ; passing contaminated, effluent blood from said tributary veins of said organ to said isolated section and capturing said effluent blood therein; and, evacuating said captured blood from said isolated section without exposing said contaminated, effluent blood to other organs or tissues of said body and without interrupting the general blood circulation of said body.
A significant and important advantage of the process of the invention over other procedures is that the toxicity or strength of the therapeutic agent used on the diseased or tumorous organ is limited only by the level of therapeutic agent that the treated organ can withstand rather than the adverse affect that the therapeutic agent may have on other organs and/or tissues of the body. Equally significant and important is the fact that blood flowing from the treated organ and contaminated with the therapeutic agent can be isolated, removed and withdrawn from the body, detoxified and cleansed, and returned to the body without interfering with, disrupting, interrupting, or stopping the normal circulation of blood flowing through the body.
As mentioned above, treatment of diseases and tumors of body organs, especially the kidneys, by many currently acceptable medical procedures involves surgical removal of tumors from the patient, culturing the lymphocyte cells infiltrating the tumors (Tumor Infiltrating Lymphocytes, or “TIL” cells) to grow an adequate number of the TIL cells, and potentiating the cytolytic activity of these cells prior to infusing them into a patient as a form of treatment.
This treatment requires that an adequate amount of IL-2 be used in the culture medium in order to expand and activate the TIL cells. Typically, it takes from about four to about six weeks to grow a sufficient amount of cells to treat a patient. Once a sufficient amount of cells are grown ex vivo, they are collected in a transfusion device for delivery to a patient. As patients receive a TIL cell infusion, they also receive bolus injections of IL-2 every eight hours for five days. This kind of therapy is commonly known as TIL/IL-2 therapy.
TIL/IL-2 therapy often fails because it is not always possible to grow a sufficient amount of cells ex vivo to treat the patient(s).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cancer treatment method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cancer treatment method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cancer treatment method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2585557

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.