Television – Special applications – Observation of or from a specific location
Reexamination Certificate
1998-04-10
2003-04-08
Vu, Ngoc-Yen (Department: 2612)
Television
Special applications
Observation of or from a specific location
C348S169000, C348S222100
Reexamination Certificate
active
06545705
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to systems which monitor and record motion events, and it relates to cameras and systems for time-sequential imaging and display, with application in numerous fields. Most particularly, the invention provides a station imaging camera and system useful for measuring timed sporting events and imaging movement along defined tracks at stations. The invention also relates to systems and methods for generating a scene by compiling successively-scanned line objects, as described for example in applicant's commonly-owned U.S. Pat. Nos. 5,552,824 and 5,657,077.
Prior art systems employing standard photographic techniques to monitor the finish line of a race are known. In such a system, typically one or more cameras equipped for high resolution imaging view the finish line and capture sequential pictures at a high rate for later inspection by a judge or other interpreter. However, this process is cumbersome, wasteful, and time-consuming, in that it requires, for example, an apparatus of photographic film and paper, processing chemicals, and image enlargers or projection optics to be employed with their respective methods of operation, development and finishing. Consequently, most races rely on human judges and revert to “photo-finish” technology only in extremely close or important events. The Specialty Instrument Corporation provides a number of electronic and photo-finish systems of this type marketed under the trademark Accutrack. U.S. Pat. No. 3,829,869 exemplifies one such Accutrack system.
Because of the problems with the “photo-finish” technology, numerous other systems for monitoring racing events have been developed. However, these other methods and systems for timing sporting events present new difficulties. Video systems which record and display races in a standard television or video format are popular, but regardless of the particular implementation of these systems, a portion of the electronic image remains on an analog medium, such as recording tape. Since analog data from the systems consists of a continuum of information over time, it is relatively difficult to accurately apportion to a unique time interval. It is even more difficult to access a particular moment in time in the recorded sequence because the associated system must search the storage medium, typically having a long physical length in a spooled format, e.g., a video cassette. This presents both limitations and difficulties for users wishing to simultaneously record, view the current race, and review earlier segments of the race (or even a previous race) because only one user can have access to any of the information stored and recorded at any one time.
A further difficulty in analog data is that it must be converted to a signal usable for video, television, or a computer before it is displayed. For example, after a completed search, a selected video tape segment is typically sent to active memory before it can be processed by a computer and, quite possibly, by supplemental complex graphics generators. Altogether, the analog format and related processing adds to the time required to review a race and therefore lengthens the decision making process.
Another problem faced by race systems occurs in the management of extended time events, like a marathon or bicycle race, which can last for hours or until each entrant finishes. The runners or cyclists cross the finish line in groups; and for long periods, the finish line is void of persons. The relevant information at the finish line is thus sporadic, and includes significant amounts of “dead” time. In analog systems, this dead time is nevertheless recorded and stored so that the image record will retain time synchronism with the event, even though the intervening dead time images are generally useless for other reasons and add to the time required for processing and reviewing the race.
Several race systems have attempted to improve the management and accessibility of data taken during a race by transforming the recorded information to a digital equivalent. But, these systems also often revert to an analog format before displaying the race on a screen. As examples, U.S. Pat. No. 4,797,751 shows a video recording system having both digital and analog sections to provide display on a common cathode ray tube (CRT). U.S. Pat. No. 5,136,283 similarly describes another partially digital system which displays races on a standard television format. These analog/digital systems still have many of the problems inherent in entirely analog systems.
Linear sensor arrays or line cameras as described more fully in the above-mentioned commonly owned '824 and '077 patents, have now also been applied to such imaging tasks. These cameras have been used for assembly line imaging as well as for athletic competition finish line imaging. They offer the advantage of extremely accurate time resolution of a restricted area, namely of a linear strip imaged by the camera, and by taking a time series of frames directed at a fixed station, a two-dimensional linear/temporal or t,y-dimension image may be formed that bears a readily interpretable similarity to the customary optical spatial or x,y-dimension image of the scene. As set forth in applicant's above mentioned patents, the data stream from such cameras can be used to detect and deal with moving objects to provide high temporal and spatial resolution in real time. This entails transmission of a generally continuous stream of line image data to a processing system, which then attends to the annotation, indexing, compression and storage of the relevant views so that a small sub-portion of relevant views can be placed in digital random access storage and readily recalled, typically within minutes or seconds of the original image acquisition, for detailed inspection. However, effective use of such line-imaging camera systems has required extensive software-mediated data handling by a trained technician operating the system, and great demands are imposed on the data transmission and synchronization for effecting image assembly, time synchronization, and image frame recording and access.
It is, accordingly, an object of the invention to provide an improved camera and system for recording and displaying a time-sequential scene of bodies crossing a plane along a track.
These and other objects will become apparent in the description below.
SUMMARY OF THE INVENTION
The invention features, in one aspect, a camera for forming a time sequential scene of bodies moving across a plane in space, wherein the camera recognizes the appearance of an object within its limited field to trigger or flag its image output stream. The system includes at least one camera which is aimed to image objects crossing a line of interest, wherein the camera time-sequentially captures the object by imaging it onto an array of detector elements and converts the sampled signal into a digital line image, or frame, which passes to a frame buffer. Each digital image frame uniquely represents a fixed slice of the moving scene at a moment in time. A processor is situated within the camera, and communicates with the buffer, processing information from corresponding pixels or larger blocks of time offset frames to detect an object which has entered the line field of view and responsive thereto, controls the image data output stream or produces data coordinated with the image stream. For example, in one aspect, the camera detects arrival or departure of objects in the image field and thereupon operates to produce or enable an image data output stream, or to annotate the stream and enhance its information content by indicating such detection. In a basic aspect, the camera may detect entry or departure of a probable object at the image field, and tag or enable the relevant portion of the image stream. In a further aspect, the camera operates on the detected image data to make object-based determinations. In this aspect of the invention, the processor inspects image features, such as shape or orientation of the
Ciholas Mike
DeAngelis Douglas
Sigel Kirk
Lahive & Cockfield LLP
Lynx System Developers, Inc.
Vu Ngoc-Yen
LandOfFree
Camera with object recognition/data output does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Camera with object recognition/data output, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Camera with object recognition/data output will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3034092