Calorimeter

Thermal measuring and testing – Calorimetry

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C374S032000, C374S010000

Reexamination Certificate

active

06726356

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a calorimeter for converting a very small amount of heat into an electrical signal and, more particularly, to a radiation detector that provides improved energy resolution and count rate by the use of a superconducting transition edge.
A calorimeter is an instrument for converting externally applied heat into an electrical signal such as current or voltage. Attempts have been made as one example of its application to detect the energy of radiation as a quite small amount of heat. A piece of literature on this is described, for example, by S. H. Moseley et al. in
Journal of Applied Physics,
56, 1275 (1984). A calorimeter has a membrane for controlling the flow rate of heat. An absorber (semiconductor) and a thermometer (semiconductor) are mounted on the membrane. The absorber absorbs heat, while the thermometer converts the heat generated by the absorber into an electrical signal. The calorimeter that detects radiation has a quantization efficiency close to 100%. That is, nearly 100% of the energy of radiation is converted into an electrical signal and so there is the advantage that the efficiency is high (i.e., no waste results). Because of this superiority, the calorimeter is adapted as a radiation detector. The energy resolution of a calorimeter is dominated by phonon noise in devices. The effects of the noise can be reduced by using cryogenic temperatures (e.g., below 1 K). In this way, attempts have been made to enhance the energy resolution.
The response speed (i.e., the time between the instant when radiation enters the calorimeter to thereby produce pulses and the instant when the original stable state is regained) of pulses produced by radiation is given by C/G where C is the heat capacity of the calorimeter and G is the thermal conductance of the membrane to dissipate heat to the outside. This conductance indicates the time in which the heat produced by the calorimeter is transmitted through the membrane and escapes.
In 1995, a superconducting calorimeter (hereinafter referred to as a “TES (transition-edge sensor”) was reported in which self-feedback function is given at the superconducting transition edge to thereby provide higher energy resolution and higher count rate than the prior art calorimeter (K. D. Irwin,
Applied Physics Letters,
66, 1998 (1995)).
With respect to superconductivity, a transition is made from normal conduction to superconductivity at transition temperatures, as shown in FIG.
5
. This range of temperatures at which the transition is made is referred to as the superconducting transition edge. The superconducting transition edge is characterized in that a greater amount of change in the resistance occurs for a given amount of temperature change. When heat enters from the outside, the TES produces a quite small change in the temperature. As a result, a greater change in resistance is obtained. When the TEM is driven at a constant voltage at the superconducting transition edge, radiation is absorbed, accompanying a change in the resistance value of the TES. An electrical current corresponding to the change in the resistance is produced. A 1-to-1 relationship exists between the energy of radiation and the peak value of the signal current. The energy of radiation impinging on the TES can be detected by reading the peak value. The self-feedback function permits heat generated inside the TES (active electrons) to escape more quickly than conventional. Higher speed operation of the calorimeter is enabled. Furthermore, the self-feedback function reduces noise and achieves higher energy resolution. Another feature is that the material of the TES can be made entirely from a metal or metals. As a result, the thermal capacity and the electron diffusion time can be reduced. In examples reported heretofore, 200 to 300 &mgr;s are reported in the case of an energy resolution of 4.5 eV.
The TES is a calorimeter which makes use of a superconducting transition edge and to which a self-feedback function is given. The TES achieves higher energies and higher speeds compared with calorimeters using semiconductors. It has been difficult to set the fall times of pulses produced in the TES due to radiation to less than 100 &mgr;s for the following reason.
The energy resolution of a calorimeter is determined by the variation in the peak values of pulses. Before the temperature in the TES is uniformly elevated by active electrons produced by X-rays, the active electrons are diffused to the outside of the TES. The variation in the peak values increases, thus deteriorating the energy resolution. The process step in which the active electrons uniformly elevate the temperature inside the TES is related to the rise time of pulses. The process step in which the active electrons diffuse out of the TES is related to the fall time. Therefore, in order to improve the energy resolution, the time (&tgr;
0
=C/G) in which active electrons are transmitted through the membrane and escape must be prolonged compared with the rise time of pulses. In this equation, C indicates the heat capacity of the calorimeter and G indicates the thermal conductance of the membrane. Where the rise time is set to 1 &mgr;s, for example, it is better to set the &tgr;
0
to equal to or greater than 1 ms. To improve the count rate, it is necessary to let active electrons escape to the outside as quickly as possible for regaining the original steady state after the calorimeter is elevated in temperature uniformly. That is, it is necessary to shorten the pulse fall time. The count rate is the inverse of 4 times the pulse time constant and indicates the number of pulses capable of being counted per second. Where one wants to improve the energy resolution, a multiple greater than 4 times may be selected.
A calorimeter having a superconducting transition edge has succeeded in shortening the pulse time constant to &tgr;=&tgr;
0
/(1+A) (where A is the feedback constant) by imparting a self-feedback function to the prior art calorimeter. The great advantage of this method over a calorimeter using a semiconductor is that the time in which electrons are caused to escape to the outside by self-feedback after temperature elevation is improved, though the time in which heat is transmitted through the membrane and dissipates is longer compared with the pulse rise time.
From these considerations, it is important to: (1) set the time in which heat is transmitted through the membrane and escapes to be a sufficiently large value compared with the electron diffusion time; and (2) to let electrons inside the calorimeter escape to the outside as quickly as possible after temperature elevation, in order to shorten the pulse time constant of the calorimeter.
A calorimeter using a superconducting transition edge has the problem that if the energy resolution is set to less than 10 eV, the feedback constant A becomes less than 100. Consequently, it has been difficult to set the pulse time constant to less than 100.
SUMMARY OF THE INVENTION
A calorimeter of the present invention using a superconducting transition edge and having an absorber for absorbing radiation and producing heat, the absorber being formed on a resistor whose resistance value is varied by the heat. The resistor is formed on a membrane for controlling escape of the heat. The calorimeter is characterized in that it is equipped with a device for letting active electrons produced in the calorimeter escape to the outside.
As a result, if the time (C/G) in which heat produced by the absorber is transmitted through the membrane as phonons and allowed to escape is set long to improve the energy resolution, active electrons inside the TES can be forced to the outside of the calorimeter. Therefore, the pulse time constant can be shortened. In consequence, higher-speed operation of the calorimeter can be realized. Furthermore, the time constant (C/G) can be set sufficiently greater than the time in which active electrons produced by the absorber are diffused inside the calorimeter. Hence, variations in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Calorimeter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Calorimeter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Calorimeter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3272060

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.