Caller identification delivery in a wireless local loop or...

Telecommunications – Radiotelephone system – Special service

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S412100, C455S414200, C455S428000, C455S466000, C375S303000

Reexamination Certificate

active

06366772

ABSTRACT:

INTRODUCTION
This invention relates to communications, and more particularly relates to systems and methods for supporting Caller Identification and related information delivery through networks incompatible to an in-band transmission of the Caller Identification information such as a wireless local loop system.
BACKGROUND OF THE INVENTION
Wireless local loop systems represent a significant improvement in telephone service by providing customers alternative access to public telephone networks. Users can continue to use familiar and convenient conventional telephone equipment yet communicate over a wireless communication link. A customer premises radio unit (CPRU) provides the interface between the conventional telephone equipment and the wireless communication link.
A number of technical challenges must be overcome, however, to successfully interface a conventional phone to a wireless communication link. For example, in a wireless environment, the digits in a complete telephone number are only transmitted to the central office after the user presses a SEND button or its equivalent. In contrast, conventional telephone equipment transmits the digits as they are dialed to the central office. Thus, a wireless local loop system may be required to, after generating a dial tone, perform digit analysis to determine that a complete telephone number has been dialed.
Another technical challenge involves delivery of Caller Identification (Caller ID or CID) in the wireline to wireless environment present in wireless local loop systems. Caller ID in a wireline environment is sent as an in-band transmission using FSK (frequency shift key) modulation. Caller ID is the generic term for several features that are a member of the Bellcore CLASS family of telephone services offered by local telephone companies for a monthly fee. Providing these services depends on the presence of Signaling System
7
(SS
7
) end-to-end in the network. SS
7
is the signaling protocol used to communicate between central office switches. In the U.S. and Canada, Caller ID follows primarily the Bellcore documents GR-30-CORE (on-hook and off-hook data transmission), TR-NWT-000031 (Calling Number Delivery), TR-NWT-001-188 (Calling Name Delivery Generic Requirements), and TR-NWT-000575 (Calling Identity Delivery on Call Waiting). In a wireless local loop environment, such an FSK-modulated signal would be garbled upon transmission through the vocoders which are required at either end of the wireless transmission (for example, the base station and the CPRU). It is to be noted that other environments wherein an FSK-modulated Caller ID signal must be transmitted through an incompatible network will also encounter this problem. There is a need in the art for a wireless local loop system that is able to deliver Caller ID information to a conventional telephone despite the in-band nature of the Caller ID transmission.
SUMMARY OF THE INVENTION
The present invention comprises systems and methods for delivery of Caller ID information in suitable environments. These environments require the transmission of an FSK-modulated Caller ID signal from a Central Office (CO) to a telephone wherein a network incompatible to an in-band transmission of the Caller ID signal intervenes between the CO and the telephone. A first network component of the incompatible network couples to the CO, and a second network component of the incompatible network couples to the telephone. In the incompatible network, the first network component converts the FSK-modulated Caller ID signal received from the calling party into an out-of-band message for transmission over the incompatible network. The second network component receives the out-of-band message and converts the message into an FSK-modulated Caller ID signal for delivery to the called party. The present invention contemplates both on-hook and off-hook delivery of Caller ID information.
The present invention comprises two main embodiments for on-hook delivery of Caller ID information. In the first embodiment, denoted as “second network component directed,” the call flow proceeds until the second network component would ring the line of the called party. The second network component seizes the line but does not apply a ringing signal. Although the line is not ringing, the second network component continues with the call flow as though the second network component had entered the silent interval after the first ring cycle at the called party. Subsequently, the CO transmits the FSK Caller ID information to the first network component which detects the FSK transmission and converts it into an out-of-band message and transmits the out-of-band message over the incompatible network to the second network component. Upon receipt of this out-of-band message from the first network component, the second network component converts it back into an in-band FSK Caller ID message, applies the first ring to the line and delivers the FSK message during the first silent interval between rings longer than three seconds. When the phone of the called party goes off-hook, voice traffic is established in a standard manner.
In the second embodiment for on-hook delivery of Caller ID information, denoted as “first network component directed,” the first network component, without sending signals to the second network component, initiates a call flow to the CO as though the second network component were entering the silent interval between the first and second rings. Subsequently, the CO transmits the FSK Caller ID information to the first network component which detects the FSK transmission and converts it into an out-of-band message. After a communication link has been established between the first network component and the second network component, the Caller ID information is transmitted in an out-of-band message. The first network component may then begin ringing the line and transmitting the Caller ID message, after conversion into the FSK format, in the first silent interval.
One example of a network incompatible to an in-band transmission of FSK-modulated Caller ID signals is a wireless local loop system. A wireless local loop system provides a wireless link between customer premises equipment (CPE) and the public switched telephone network (PSTN). In wireless local loop systems, a number of different protocols may be used at the first and second network units. For example, the first network component may communicate with the CO of a public switched telephone network under a GR-303 protocol. The first and second network components may communicate with each other through a wireless network under, for example, a DECT or a GSM protocol. In one wireless local loop embodiment of the present invention, the CPE links to a customer premises radio unit (CPRU) which serves as the second network component. The CPRU communicates over the wireless link to a base station. In turn, the base station may be controlled by a radio node controller (RNC) that serves as the first network component. The RNC connects to the public switched telephone network containing the central office (CO). With respect to this wireless local loop, the “first network component directed” embodiment would thus be an “RNC directed” embodiment and the “second network component directed” embodiment would be a “CPRU directed” embodiment.
On hook delivery of a Visual Message Waiting Indication (VMWI) is also provided for by the present invention. In this embodiment, an over the air connection is established between the first and second network components. Upon establishing the over the air connection, the first network component transmits the connection status to the CO which transmits the FSK-modulated VMWI information to the first network component. The first network component converts the FSK-modulated VMWI information into an out-of-band message and transmits it to the second network component. The second network component converts the out-of-band message back into an FSK-modulated VMWI form and transmits it to the called party.
The present invention also contempla

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Caller identification delivery in a wireless local loop or... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Caller identification delivery in a wireless local loop or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Caller identification delivery in a wireless local loop or... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2896935

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.