Call management implemented using call routing engine

Telephonic communications – Plural exchange network or interconnection – Routing parameter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S265020, C379S289000

Reexamination Certificate

active

06674852

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to call management using a routing engine in a communications system, and more specifically, to a call management technique that may be used to facilitate implementation of dialed number translation techniques.
2. Brief Description of Related Prior Art
Systems for managing and routing calls through public and/or private communications networks are known in the art. Conventional automatic call distribution (ACD) systems route calls to agents in telemarketing and service inquiry centers, and provide limited real-time call management and reporting capabilities. A typical ACD system will monitor the status of the agent and, when an incoming call is received, selects the agent to handle a particular service request. Reporting and performance data from the agents are also generated by the ACD.
One particular type of scheme for distributing calls to agents is disclosed in Frauenthal et al., U.S. Pat. No. 4,737,983. According to Frauenthal et al., data representing the present call congestion of each of the ACD systems is accumulated in a data base. Using the data in the data base, the percentage of calls made to the ACD systems, as a group, is determined. The information is then used to generate call routing information. When a new call is made to the central office, the routing information is queried to determine which of the ACD systems is to receive the call, so as to balance the call traffic load across the ACD systems.
Another call management and distribution scheme is provided in Gechter et al., U.S. Pat. No. 5,036,535. This patent discloses a system for automatically distributing telephone calls placed over a network to one of a plurality of agent stations connected to the network via service interfaces, and providing status messages to the network. Gechter et al.'s disclosed system includes means for receiving the agent status messages and call arrival messages from the network, which means are connected via a network service interface to the network. Routing means responsive to the receiving means is provided for generating a routing signal provided to the network to connect the incoming call to an agent station through the network. In the system disclosed in Gechter et al., when an incoming call is made to the call router, it decides which agent station should receive the call, establishes a call with that agent station, and then transfers the original call onto the second call to connect the incoming caller directly to the agent station and then drops out of the connection (See, Gechter et al., column 11, lines 45-51).
Other prior art call management, routing, and distribution techniques are disclosed in Andrews et al., U.S. Pat. No. 5,873,130, which is assigned to the assignee of the subject application. This patent discloses a communications system and method for automatically making telephone routing decisions with global authority based upon information gathered in real time from the entire communications system and global optimization criteria. The entirety of the disclosure of the Andrews et al. patent is incorporated herein by reference.
Conventional communications systems of the type disclosed in the aforesaid Andrews et al. patent typically comprise one or more ACD systems connected to each other via at least one public switched telephone network (PSTN). The ACD systems and the PSTN may be controlled by a central controller so as to route calls to and from agents (and/or caller services, such as interactive voice response units) associated with such systems, and callers external thereto, through the ACD systems and PSTN.
It is not uncommon for each such ACD system to implement “dialed plans” or “dialed number translation” techniques (hereinafter collectively or singly referred to as “dialed number plans”). In such conventional dialed number plans, a number dialed by an agent, or an alphanumeric string entered by the agent via a computer telephony-integration (CTI) agent workstation may be used to request the establishment of an outbound call. The dialed number or entered string may be compared to preconfigured dialed number and alphanumeric string entries in dialed number plan translation tables (DNPTT) stored in the ACD system. If the dialed number and/or entered alphanumeric string matches one of these preconfigured entries, the ACD system determines from an associated entry in the DNPTT a predetermined conversion or translation algorithm that is to be applied to the dialed number to convert or translate the dialed number into an actual destination telephone number for being supplied to the PSTN to establish the call via the PSTN. Such conversion/translation algorithms are hereinafter and/or singly termed “conversion algorithms”.
Such conversion algorithms may be used to implement certain dialing conveniences or features (e.g., “speed dialing” features whereby a dialed extension number is converted into a telephone number that may be validly supplied to the PSTN to initiate an outbound call), and may involve, e.g., pre-pending one or more predetermined digits to the beginning of a dialed number so as to cause the resulting numerical string to include all necessary outside dialing, long distance, and area code prefixes. Other such conventional algorithms may convert a logical name or handle (e.g., the handle “sales”) entered by an agent via a CTI agent workstation into a telephone number associated with the entered name or handle in the dialed number plan tables (e.g., a telephone number that may be validly supplied to the PSTN to initiate the establishment by the PSTN of a call to a corporate sales department). The DNPTT may also include other entries that indicate e.g., whether a given agent is authorized to request the type of outbound call (e.g., an interational long distance, national long distance, etc. call) that will be initiated if the actual valid telephone number generated by the conversion algorithms is provided to the PSTN.
Unfortunately, in these conventional ACD-implemented dialed number plans, each of the individual ACD systems maintains its own respective DNPTT and implements its own respective dialed number plan; no mechanism is provided that permits the implementation of a truly global (i.e., communication system- or enterprise-wide) dialed number plan (i.e., based upon a truly global dialed number plan and DNPTT). Disadvantageously, this decreases the efficiency and utility of the communication system.
Also unfortunately, the conventional conversion algorithms that are applied to the dialed numbers and agent-entered strings to convert them to valid PSTN destination telephone numbers are preconfigured in the respective DNPTT of the ACD systems and do not change dynamically based upon real-time conditions (e.g., the availability and configuration of telecommunication resources) in the communication system. This is also disadvantageous, since such conditions in the communications system may change quite rapidly, and therefore, such static preconfiguring of the conversion algorithms may reduce the efficiency of the communication system.
Additionally, conventional ACD systems typically are complex telecommunications devices and costly to acquire; thus, the use of conventional ACD systems in such conventional dialed number plans inherently increases the cost and complexity of implementing such plans. Accordingly, it would be desirable to reduce or eliminate the need to use conventional ACD systems in implementing dialed number plans.
Furthermore, the use of Internet Protocol (IP) telephony to carry voice telephone traffic offers cost advantages over the use of Plain Old Telephone Service (POTS) telephony to carry such traffic, as in contradistinction to POTS telephony, an IP network may be used to carry both voice and data traffic over a single network connection. Additionally, the widespread and increasing availability of IP broadband service is making use of IP telephony even more attractive. Accordingly, it would be desirable to provide means for f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Call management implemented using call routing engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Call management implemented using call routing engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Call management implemented using call routing engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200107

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.