Electrical computers and digital processing systems: multicomput – Computer network managing – Computer network monitoring
Reexamination Certificate
2000-08-14
2004-02-24
Alam, Hosain (Department: 2155)
Electrical computers and digital processing systems: multicomput
Computer network managing
Computer network monitoring
C709S226000, C709S227000, C370S231000, C379S266070
Reexamination Certificate
active
06697858
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to software-based telecommunications call center provisioning, management, and supervision.
BACKGROUND OF THE INVENTION
Organizations with more than trivial needs for customer interaction often use call centers to provide services to their customers and to organize sales personnel. A call center is a central place where an organization (company) handles customer and other calls, usually with some amount of computer automation. Typically, a call center can handle a considerable volume of inbound and outbound calls at the same time, to screen inbound calls, forward them to agents with appropriate skills, and to maintain records of the calls and the call center agents. Call centers have traditionally been used by mail-order catalog companies, telemarketing companies, computer product help desks, and large organizations that use the telephone to sell or service products and services.
With the advent of the information revolution of the 1980's and 90's, customer interactions often involve communications through alternative channels, such as facsimile (fax) transmissions, email, and web-based contacts. (We will generically refer to these interactions and the conventional telephone calls as “e-contacts,” “contacts,” “interactions,” or simply as “calls.”) The individual agent skills required for a particular customer interaction depend on the nature of the customer's need and the customer's identity; the skills generally do not depend on the specific type of e-contact made, be it by telephone, email, fax, or web-based. Therefore, it is desirable call center efficiency and flexibility by allowing the agents to respond to contacts based on agent skills, and without differentiation based on contact type.
Individual handling of interactions is expensive. The expense rises whenever a specific interaction cannot be handled immediately, requiring rerouting and handling by multiple agents. Moreover, customers tend to get frustrated when their contacts are rerouted. It would be advantageous to pre-process received calls to identify the most appropriate agents and to link the call to relevant information available to the agents. To some extent this is already done through the use of Interactive Voice Response (“IVR”) systems, but IVR systems tend to irritate customers and, in any event, it would be desirable to pre-process contacts automatically and without regard to the specific contact type or medium.
Because a call center is the focal point of customer interaction for a typical company, its failures damage the company's good will and often result in immediate loss of sales. It is important for the call center to have high reliability. One way to achieve it is through distributed, fault-tolerant design. By “fault-tolerant design” we do not mean a merely “fail-safe design,” where the system has built-in redundancy and can restart a failed process or switch to its equivalent and continue operations after a brief interruption. Because even a brief interruption can cause dropped calls, it is preferable to have a seamless transition to the back-up process without dropping calls.
In a competitive environment, a company need not be a “dot-com” to require a functional call center within a short time. But provisioning such a center in the modern eclectic telecommunications environment is a labor-intensive, long, and complicated task usually performed “integrators.” It is highly desirable to have the capability to provision call centers quickly and without the massive efforts of trained technicians, engineers, and programmers.
A call center's need for resources varies with many factors, such as the time of day. For example, some call centers are busiest in the early evening, the time telemarketers believe to bedmost propitious for credit card applications and long-distance telephone service selection. In contrast, call centers for business-related services are busiest during regular business hours. For this reason, it would be advantageous to share call center resources with additional call centers, or even with completely different applications. More particularly, it is desirable to be able to shift resources between applications, starting and stopping the resources seamlessly, without disturbing existing calls and without preventing immediate processing of new calls. Similarly, it is desirable to have dynamic balancing, adding and stopping resources when usage or availability of physical hosts changes.
In fact, any high volume telecommunications environment would benefit from resolution of the needs described above. A typical high volume telecommunications environment may have thousands, even millions, of dedicated lines, often operating inefficiently because each company has dedicated telephone lines and associated hardware, such as PrivateBranch Exchanges (PBXs), Automated Call Distributors (ACDs), IVRs, Fax Servers, Conferencing Bridges, Internet Chat Servers, or Voice Over IP (VOIP) Gateways. The hardware, dedicated lines, and other facilities can be hosted by the service provider or a telephone company. These resources are not shared among the various companies and operate inefficiently as a whole. Shared use is therefore desirable to achieve economies of scale and to allow efficient re-distribution or re-allocation of such resources.
Another desirable feature is flexibility in limiting call center use, so that the call center operator (or licensor) can provide various billing and service packages to the companies.
SUMMARY OF THE INVENTION
Accordingly, aspects of the present invention provide technical advantages that solve one or more of the needs listed above.
One aspect of the invention is the capability to create, configure, deploy, and manage a distributed, software-based call center architecture for wide (e.g., global or regional) network of disparate media and communication types with one or more points of cohesive control and configuration in a way that non-programmers can manage the call center network.
Another aspect is the capability to provision multimedia, communication, and server resources as they come on line, without disruption of existing services, with dynamic removal and addition of the resources, so that the network can expand or collapse without service interruption.
A third aspect is the call center network's capability to adjusts load distribution dynamically, in real time, performing load balancing automatically as the resources stop, are reconfigured, or added.
A fourth aspect is mirroring of some or all processes, servers, and functions, so no single point of failure can disrupt service on the network. Mirroring in combination with load balancing described in the paragraph immediately above achieve redundancy and fault-tolerance across the network, with self-healing properties and soft recovery without major disruptions to the call center.
According to a fifth aspect, certain of the call center resources can be partitioned among two or more companies. Private data, routing rules, libraries, and other attributes of each partition are used to service one company. Partitioning optimizes the use of shared hardware and network shared resources, and preserves customization and private data of each company.
In the sixth aspect, the call center provides the ability to package and bundle network resources for each company, and to track and limit use for each company with a class of service controls. This can be achieved, for example, by limiting the number of simultaneous interactions between a company's call center and its customers.
The seventh aspect is the ability to reconfigure and expand hardware devices so that they can be dynamically put into service on the call center network without service disruption. The additional hardware can then be host-partitioned and dynamically configured to allocate resources to one or more companies. The hardware devices include, for example, Customer Premises Equipment (CPE) signaling interfaces, network signaling interfaces, voice, fax, data processing,
Aljane Ali
Borodow Eli Ben
Ezerzer Ran
Holly, Jr. Gerald Augustin
Jarquin Roberto Armando Portillo
Alam Hosain
Dinh Khanh Quang
Gillespie Noel C.
Telephony@Work
LandOfFree
Call center does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Call center, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Call center will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3303337