Calibrating body

Coating processes – With post-treatment of coating or coating material – Heating or drying

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S381000

Reexamination Certificate

active

06833163

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a calibrating body which consists at least in part of a carbon fiber composite body.
The German Patent No. 19 642 506 C1 describes the manufacture of an article based on carbon fiber materials, carbides and/or DI carbides with great surface stability and great temperature stability. A carbon-based blank in the form of graphite or carbon fibers is infiltrated or impregnated by a mass of silicon, boron, copper, and one or more refractory metals. An oxygen-free reaction takes place to form, first of all, silicon carbide, and then boron carbide. Oxygen-free, the impregnated blank undergoes an increase in weight of 15-150%, at a temperature of 2190 to 2220 K, and a pressure of 60 to 400 Pa. Intermediate cooling takes place; and then a paste consisting of hafnium, boron, carbon and organic binders is applied to the surface of the blank. The blank is then completely dried, followed by heat treatment in silicon and a nitrogen atmosphere. Among other things, end-measuring rods and plug gauges can be produced from blanks thus manufactured.
Calibrating bodies are used in other areas of industry and research to perform spatial measurements of structures and components, or to adjust and calibrate measuring instruments and devices. Following initial setup, such measuring devices must be re-calibrated after repairs, and routinely after specified time intervals.
The calibration length is guided by the size of the unit to be measured, and can exceed 1000 mm. Additionally, calibrating bodies in a majority of applications must have stable shapes in the three spatial directions.
Calibrating bodies are configured as two-dimensional components, such as plates, or as three-dimensional bodies such as cubes or tetrahedrons. Such a three-dimensional testing body is known from the German Patent No. DE-A1 197 20 883. This testing body functions for monitoring of spatially positioned or measured systems, particularly of coordinate measurement devices. A special tetrahedron structure made of spheres and rods is described, with the rods made of carbon fiber composite material with fibers that are unidirectional in the longitudinal direction of the rod. The individual rods are connected to each other at nodal points at which the spheres are placed. Using such a device, large and stationary objects are to be measured; the rod-and-sphere design makes possible easy assembly and disassembly, and thus easy transport. The use, in one embodiment form of this test body, of carbon fiber rods with a longitudinal fiber orientation, ought to contribute toward lowered test body weight, great long-duration stability and thermal expansion coefficients tending toward zero. It is true, however, that the structure permitting disassembly results in considerable inadequacies regarding accuracy to gauge and reproducibility of it.
It has been shown that calibrating bodies that include components made of carbon fibers (carbon-fiber-reinforced plastics) possess disadvantageous properties of water accumulation, creep (by “creep” is meant a load-dependent (including intrinsic weight) deformation whose amount changes with time), swelling, and embrittlement, and thereby demonstrate a measurable geometric alteration. They thus of necessity yield measurement accuracies that are unacceptable for many instances of application.
Additionally, after repeated thermal loads, such calibrating bodies exhibit a peculiarity in that when the temperature loading has receded i.e., when the initial temperature has been reached, permanent geometric changes may appear. This permanent change resulting from temperature alternations is designated as geometrical hysteresis, and it means that calibrating bodies, for example, may not be giving constant measurements while used. Thus, it is not a given that these calibrating bodies will maintain accuracy to gauge during or between calibration measurements when there are temperature changes. Therefore, such calibrating bodies must be re-measured at regular intervals (intrinsic calibration), in order to continue to be used as a test body. Further examples of the state of the art that is generally concerned with calibrating bodies or true-to-mass parts, are to be found in the following patent publications: DE 44 09 377 A1, JP 6-249767 A, DE 35 03 804 A1, DE 35 03 779 A1, EP 0 660 073 A1, W091/19953 A1, DD 290 255 A5, DD 290 254 A5 and DD 262 275 A1.
SUMMARY OF THE INVENTION
Based on the state of the art described above, the task of the present invention is to produce a calibrating body which exhibits virtually no measurable geometrical hysteresis in a temperature range from −50° C. to +75° C., and thus possesses a long-duration accuracy to gauge, whereby the required number of intrinsic calibrations of such a calibrating body can be substantially reduced as compared to known calibrating bodies.
This object, as well as other objects which will become apparent from the discussion that follows, is achieved by a calibrating body that consists at least in part of a carbon fiber composite material, with the composite body consisting of a porous material made of a carbon-containing matrix into which the carbon fibers are embedded. This matrix is thickened through fluid filtration of Si, which essentially has been transformed into SiC by reaction with carbon. The overall portion of Si and SiC is a maximum of 60% by volume. The carbon fibers have a minimum length of 3 mm.
In such a test body, virtually no geometric alterations in shape are observed as a consequence of thermal loading. It can be determined that no thermally-caused hysteresis loops are produced in the required temperature range of −50° C. to +75° C., and, if there are any, length alteration is reversible via the temperature. Such calibrating bodies can be especially used in the service area of measuring device manufacture. They meet the requirement of a thermal expansion coefficient that satisfies the condition −1×10
−5
≦&agr;≦+1×10
−8
[1/K], which has a small thermal capacity, which demonstrates high thermal conductivity, so that the time interval of acclimatization until reuse can be minimized. Additionally, such a test body is distinguished by its small, specific weight, in the area of p=2.0 g/cm
3
. Also, the material reveals that atmospheric moisture does not affect it. Additionally, no tendency toward breakage owing to embrittlement is observed. Lastly, the invention-specific calibrating bodies have high rigidity, to preclude deformations through their intrinsic weight. Compared to customary calibrating bodies made, for example, of Invar, such invention-specific bodies can be manufactured at relatively favorable costs.
Virtually no measurable changes in length appeared upon heating in the required temperature range, through the above-indicated thermal expansion coefficient
&agr;
. From this it can be gleaned that likewise when cooled, the bodies experience almost no change, and thereby also no hysteresis.
The portion of free Si in the composite body should be smaller than 10% by volume, and preferably smaller than 1% by volume. Consequently, care is to be taken that the Si incorporated into the carbon fiber body through fluid filtration be substantially converted into SiC by reaction with carbon, so that the least possible portion, if possible less than 1% by volume, of free Si remains. Such a small portion of free Si causes thermal stability to be enhanced.
Too high an Si portion, and also a high portion of SiC, also results in a decrease in component stability, and additionally in an increase in mass, and an alteration of the thermal expansion coefficient
&agr;
in the direction of excessively high elongations.
It is advantageous if invention-specific calibrating bodies can easily be made into an appropriate geometric shape, by, first of all, having a composite body in the geometric shape of the calibrating body manufactured from a porous material from a carbon-containing matrix, with carbon fibers embedded i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Calibrating body does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Calibrating body, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Calibrating body will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3330570

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.