Cacao endoproteinases and production of cocoa flavor from same

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S252300, C435S320100, C536S023200

Reexamination Certificate

active

06790650

ABSTRACT:

BACKGROUND ART
The present invention pertains to novel endoproteinases involved in the production of cocoa flavor and the DNA coding for them. In particular, the present invention relates to the use of said enzymes for the manufacture of cocoa flavor.
It is known that in processing cacao beans the generation of the typical cocoa flavor requires two steps—the fermentation step, which includes air-drying of the fermented material and the roasting step. Though roasting seems to be the key stage of obtaining cocoa flavor subjecting non fermented beans to a roasting step does not yield cocoa flavor suggesting that during the fermentation step precursors are produced that are essential for flavor generation (Rohan J. Food Sci. 29 (1964), 456-459).
During fermentation two major activities may be observed. First, the pulp surrounding the beans is degraded by micro-organisms with the sugars contained in the pulp being largely transformed to acids, especially acetic acid (Quesnel et al. J. Sci. Food. Agric. 16 (1965), 441-447; Ostovar and Keeney, J. Food. Sci. 39 (1973), 611-617). The acids then slowly diffuse into the beans and eventually cause an acidification of the cellular material. Second, fermentation also results in a release of peptides exhibiting differing sizes and a generation of a high level of hydrophobic free amino acids. This latter finding led to the hypothesis that proteolysis occurring during the fermentation step is not due to a random protein hydrolysis but seems to be rather based on the activity of specific endoproteinase (Kirchhoff et al., Food Chem 31 (1989), 295-311). This specific mixture of peptides and hydrophobic amino acids is deemed to represent cocoa-specific flavor precursors.
So far in cacao beans several proteolytic enzyme activities have been investigated and checked for their putative role in the formation of cocoa flavor precursors.
An aspartic endoproteinase activity which is optimal at very low pH (pH 3.5) and is inhibited by pepstatin A has been identified. A polypeptide described to have this activity has been isolated and is described to consist of two peptides (29 and 13 kDa) which are deemed to be derived by self-digestion from a 42 kDa pro-peptide (Voigt et al., J. Plant Physiol. 145 (1995), 299-307). The enzyme cleaves protein substrates between hydrophobic amino acid residues to produce oligopeptides with hydrophobic amino acid residues at the ends (Voigt et al., Food Chem. 49 (1994), 173-180). The enzyme accumulates with the vicilin-class (7S) globulin during bean ripening. Throughout germination, its activity remains constant during the first days and does not decrease before the onset of globulin degradation (Voigt et al., J. Plant Physiol. 145 (1995), 299-307).
A cysteine endoproteinase activity had been isolated which is optimal at a pH of 5. This enzymatic activity is believed not to split native storage proteins in ungerminated seeds. Cysteine endoproteinase activity increases during the germination process when degradation of globular storage protein occurs (Biehl et al., Cocoa Research Conference, Salvador, Bahia, Brasil, Nov. 17-23, 1996).
Moreover, a carboxypeptidase activity has been identified which is inhibited by PMSF and thus belongs to the class of serine proteases. It is stable over a broad pH range with a maximum activity at pH 5.8. This enzyme does not degrade native proteins but preferentially splits hydrophobic amino acids from the carboxy-terminus of peptides. Yet, peptides with carboxy-terminal arginine, lysine, or proline residues are seemingly resistant to degradation. The rate of hydrolysis has been found to be not only determined by the carboxy-terminal amino acid as such, but also to be affected by the neighbouring amino acid residue (Bytof et al., Food Chem. 54 (1995), 15-21).
During the second step of cocoa flavor production—the roasting step—the oligopeptides and amino acids generated at the stage of fermentation have been found to obviously undergo a Maillard reaction with reducing sugars present eventually producing the substances responsible for the cocoa flavor as such. This hypothesis has been confirmed in an experiment, wherein an oligopeptide fraction isolated after fermentation of cacao beans had been subjected to roasting in the presence of free amino acids and reducing sugars to obtain cocoa flavor (Mohr et al., Fette, Seifen, Anstrichmittel 73 (1971), 515-521 and 78 (1976), 88-95).
Cocoa-specific aroma has also been obtained in an experiment wherein acetone dry powder (AcDP) prepared from unfermented ripe cacao beans was subjected to autolysis at a pH of 5.2 followed by roasting in the presence of reducing sugars. It was conceived that under these conditions preferentially free hydrophobic amino acids and hydrophilic peptides should be generated and the peptide pattern thus obtained was similar to that of extracts from fermented cacao beans. An analysis of free amino acids revealed that Leu, Ala, Phe and Val were the predominant amino acids liberated in fermented beans or autolysis (Voigt et al., Food Chem. 49 (1994), 173-180). In contrast to these findings no cocoa-specific flavor could be detected when AcDP was subjected to autolysis at a pH of as low as 3.5, the pH, at which the known aspartic endoproteinase shows activity. Only few free amino acids were found to be released but a large number of hydrophobic peptides were formed. This may be explained by the aspartic endoproteinase having a high activity at this pH with the carboxypeptidase being substantially inactive under these conditions. When incubating peptides obtained after autolysis of AcDP at a pH of 3.5 with carboxypeptidase A from porcine pancreas at pH 7.5 hydrophobic amino acids were preferentially released. The pattern of free amino acids and peptides was rather similar to that found in fermented cacao beans and in the proteolysis product obtained by autolysis of AcDP at pH 5.2. After roasting of the amino acids and peptides mixture as above, a cocoa aroma could be generated. On the contrary, with a synthetic mixture of free amino acids alone whose composition was similar to the spectrum found in fermented beans cocoa flavor could not be detected after roasting, indicating that both the peptides and the amino acids are important for this purpose (Voigt et al., Food Chem. 49 (1994), 173-180).
Apart from the enzymes also the protein source of the peptides/amino acids seems to be of importance for the generation of cocoa flavor.
During cacao bean fermentation, the percentage reduction of protein concentration observed for vicilin and albumin was 88.8% and 47.4%, respectively (Amin et al., J. Sci. Food Agric. 76 (1998), 123-128). When peptides obtained by proteolysis of the globulin fraction were post-treated with carboxypeptidase, hydrophobic amino acids (Leu, Phe, Ala, Val, Tyr) were preferentially released and a typical cocoa aroma was detected after roasting in the presence of reducing sugars (Voigt et al., Food Chem. 50 (1994), 177-184). In contrary to that, the predominant amino acids released from the albumin-derived peptides were aspartic acid, glutamic acid and asparagine. Furthermore, no cocoa aroma was detected with the albumin fraction. It was therefore concluded that cocoa-specific aroma precursors are preferentially derived from the vicilin-like globulin of cacao bean. Consequently, the mixture of hydrophobic free amino acids and remaining oligopeptides required for the generation of the typical cocoa flavor components seems to be determined by the particular chemical structure of the cacao vicilin-class globulins.
These globulins isolated from cacao beans were also found to be efficiently degraded by pepsin (an aspartic endoproteinase) and chymotrypsin (a serine endoproteinase). Products derived from cacao globulins by successive proteolytic digestion with pepsin and carboxypeptidase A revealed a typical, but less pronounced cocoa aroma upon roasting. No cocoa aroma precursors were generated by degradation of globulins with chymotrypsin and carboxypeptidase A (Voigt et al., Food Chem, 51 (1994), 7-14). Therefore, the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cacao endoproteinases and production of cocoa flavor from same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cacao endoproteinases and production of cocoa flavor from same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cacao endoproteinases and production of cocoa flavor from same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3231033

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.