Electricity: conductors and insulators – With fluids or vacuum – Conduits – cables and conductors
Reexamination Certificate
1998-06-24
2001-09-25
Nguyen, Chau N. (Department: 2831)
Electricity: conductors and insulators
With fluids or vacuum
Conduits, cables and conductors
C174S036000, C174S1060SC
Reexamination Certificate
active
06294728
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The invention concerns a cable, particularly a coaxial cable, with an internal conductor, an insulation which encloses the internal conductor, and an external conductor which encompasses several long elements.
2. Description of the Prior Art
Many cables comprise one or several internal conductors, an insulation which encloses the internal conductor, and an external conductor placed over it which most often forms an electrical shield. Electrical coaxial cables e.g., such as are used for antenna cables or data cables have such a construction, for instance for networking computers. An external conductor often comprises long individual elements which preferably have a nearly circular cross section, especially wires, strands or optical fibers. The elements that rest on an insulation can form a single or several independent external conductors, and essentially extend in the longitudinal direction of the cable, with a possible winding around the cable axis, or a corrugation to equalize the length. The outside of the external conductor in turn is surrounded by a cladding layer, which jointly encloses its elements and the insulation and rests against both of them. In the simplest of cases the cable jacket is the cladding layer. Especially in coaxial cables, the usual construction has a metal foil applied as the cladding layer over external conductor wires, which together form the shielding of the internal conductor or conductors.
If stiff plastic insulations are used, there is always the danger of the external conductor elements shifting during the production of the cable or its handling, particularly when the cable is bent. If the elements of the external conductor are the shield wires of a coaxial cable, the shielding can undergo considerable impairment if the shield wires of the cable are shifted to the inside of a bend. When soft insulations are used, into which the elements can penetrate, the limitation of the possible insulation materials is a disadvantage. In addition, the production requires the elements to be accurately aligned in the intended position in the cable before the cladding layer is applied. Finally it can be imagined to provide grooves in the insulation and to deposit the elements therein. However, this is also expensive and requires a high degree of production accuracy.
SUMMARY OF THE INVENTION
Starting therefrom, the object of the invention is the development of a cable that can be produced in a simple manner, in which the elements of the external conductor are affixed around the cable axis independently of the mechanical characteristics of the insulation in regard to shifting.
The idea of the invention is to secure the external conductor on the periphery of the insulation by shaping it in conjunction with the cladding layer. To that end the outline of the insulation's cross section with respect to the vertical cable axis has the shape of a polygon. The elements of the external conductor are located in the area of the polygon sides, while the cladding layer is supported by the corners of the polygon and the outside of the elements. In this way the position of the external conductor elements is fixed on the insulation, which particularly prevents the cladding layer from shifting over the corners of the polygon. Suitable elements are for example wires or strands, perhaps made of copper, or optical fibers which can also be routed between electrical shield wires. To also be able to affix in the specified manner such external elements of the conductor which are stranded around the insulation, the sides and the corners of the polygon, namely the flat external surfaces and the edges of the insulation can extend helically around the cable axis.
Polygons with about 4 to 20, preferably 6 to 10 corners are useful as a function of the diameters of insulation and the elements. A small number of corners allows a particularly good attachment of the elements to the respective lateral surface of the polygon. But a larger number of corners allows to achieve a better approximation to a round cross section, which is preferred with a coaxial cable e.g. for reasons of field symmetry and handling. In addition to a polygon with flat sides, concave bulging or wavy insulation surfaces are possible to improve the attachment of the elements and possibly provide space for receiving elements with a larger diameter.
It is useful if the cladding layer is a tape or a foil which is preferably placed longitudinally in the cable and around the insulation and the elements. Adjacent edges of the cladding layer are preferably welded to abut or overlap each other. This makes it possible to provide a water-tight closure of the inner cladding layer against moisture penetrating into the cable jacket.
The configuration of the cable inside the polygon is mostly unrestricted within the framework of the invention. It is particularly possible to use different materials for the insulation, for instance solid or foamed plastics. A multi-layer insulation is also possible, for example a plastic with a final foil or conductive layer placed on its surface. The cable can also contain one or several internal conductors which can either be electrical or also optical conductors.
The advantage of the proposed cable is in the secure attachment of the external conductor to the periphery of the insulation. In that case the attachment can be achieved in a simple manner, independently of the insulation material, by installing the cladding layer over the external conductor and the insulation. This precludes any shifting of the external conductor elements, for instance where the cable is bent. The shielding of coaxial cables can especially be improved in this manner. The defined arrangement of the external conductors is advantageous for connecting cables to each other or to interface units.
In an advantageous configuration of the invention both the cladding layer and several external conductors are electrically conductive and make electrical contact with each other. In that case it is useful if the cladding layer is a metal foil, for instance a steel or aluminum foil, or a two or more layered metal-plastic composite foil. In this way the cladding layer and the elements of the external conductor jointly form the shielding of the internal conductor, as is usual for example with a coaxial antenna cable or a data cable. However, in contrast to cables known from the state of the art, the wires or strands of the external conductor are fixed to prevent their shifting over/on the periphery of the insulation.
If the cladding layer is a tape that is introduced into the cable and laid around the insulation, production can be simplified if its adjacent edges overlap each other. Preferably this is a tape extending in the longitudinal direction of the cable, while its edges run parallel to the cable axis and overlap each other. In the case where a metal-plastic composite foil is the cladding layer, it is useful if both surfaces of the foil are electrically conductive in order to provide a reciprocal electrical contact in the overlap area, and thereby good shielding. It can be envisioned to cement or weld the overlapping edges.
In order to improve the attachment of the external conductor, the cladding layer is preferably attached to the insulation in the area of the polygon corners. To that end cementing or welding between the cladding layer and the insulation is proposed, which is easy to carry out. This effectively prevents an element of the external conductor from shifting over a corner of the polygon.
Especially if the external conductor forms a shield, possibly together with the cladding layer, the uniform arrangement of its elements on the surface of the insulation is advantageous. In that case it is useful if the number of elements per surface unit is the same on each side of the polygon. Furthermore a symmetrical cylinder structure of the cable with respect to its axis is an advantage as a rule. A uniform polygon as the cross section of the insulation represents an optimum approxima
Fleischhauer Rainer
Wagner Dieter
Alcatel
Nguyen Chau N.
Ware Fressola Van der Sluys & Adolphson LLP
LandOfFree
Cable with external conductor of several elements does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cable with external conductor of several elements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cable with external conductor of several elements will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2455361