Movable or removable closures – Stored in housing – Reciprocates vertically in and out of housing
Reexamination Certificate
2000-06-01
2003-08-26
Strimbu, Gregory J (Department: 3634)
Movable or removable closures
Stored in housing
Reciprocates vertically in and out of housing
C049S226000
Reexamination Certificate
active
06609334
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a cable-operated window lifting mechanism for moving a window pane on a vehicle, in particular an automobile and the like, with two guide sections, on which a respective sliding element is movably guided, wherein the cable operates on at least one sliding element and the window pane is supported on each sliding element.
BACKGROUND OF THE INVENTION
A cable-operated window lifting mechanism having the aforedescribed characteristic features is described, for example, in DE-OS-37 27 153. In window lifting mechanisms of this type, the window pane to be moved is guided on each of the two guide rails. The window pane is held by carriers which in turn slide in the guide rails. In addition, the cable operates on the carriers and can be moved with a crank or by an electric motor drive, raising or lowering the window pane depending on the direction of rotation.
The two guide rails are separately mounted on the vehicle door and should ideally be oriented exactly parallel to one another. However, this can rarely be achieved in practice, since the location of the attachment holes in the guide rails and the corresponding bores in the vehicle door are subject to manufacturing tolerances. As a result, the guide rails mounted on the vehicle door are typically not oriented parallel to one another, which may not only make it difficult to move the window pane, but the window pane may actually jam. Problems during assembly may also cause non-parallelism of the guide rails. According to the state of the technology disclosed in the reference, difficult movement and possible jamming of the window pane can be prevented by providing at least one of the two carriers with adjusting means for adjusting the height of the window pane as well as with adjusting means for lateral displacement of the window pane transversely to the carrier and/or to the guide rail guiding the carrier.
EP 0 844 355 A1 discloses providing an elongated hole in carrier or in the support plate of the window pane for adjustment of the window pane in the longitudinal direction of the vehicle (X-axis). In this way, the window pane can move in the direction of the X-axis relative to the carrier and/or the window pane holder. The conventional compensation mechanisms are complex and have not proven successful in practical applications. Another problem is encountered in properly setting and adjusting the compensation mechanisms during the initial assembly of the cable-operated window lifting mechanism on the assembly line of the automobile manufacturer.
SUMMARY OF THE INVENTION
It is the object of the present invention to improve a cable-operated window lifting mechanism having the aforedescribed characteristic features in such a way that the non-parallelism of the two guide sections, which is almost always encountered in practice, can be easily compensated. It is another object of the invention to simplify the initial assembly of the window lifting mechanism and the initial adjustment of the compensation mechanism on the assembly line of the automobile manufacturer.
The object is essentially solved by a cable-operated window lifting mechanism having the aforedescribed characteristic features, by guiding one of the sliding elements with play at least over partial sections of the respective guide section in the direction of the longitudinal axis (X-axis) of the vehicle, thereby enabling a compensating motion in the direction of the X-axis when the window pane is displaced.
A possible non-parallelism of the two guide sections in the X-direction can be easily and permanently compensated by providing one of the sliding element with a degree of freedom in the direction of the X-axis, while the other sliding element which is guided on the respective guide section, is guided in a conventional manner essentially without play in the direction of the X-axis and the axis extending transversely to the vehicle (Y-axis). The respective two sliding elements guided on the guide sections form a stationary-moveable bearing pair, wherein the moveable bearing can easily compensate variations in the separation between the two guide sections. This design obviates the need for additional adjusting means to provide compensation. The window pane can also be rigidly connected with the sliding element or with the window pane holder.
According to a first advantageous embodiment of the invention, the other sliding element is guided in a conventional manner essentially without play in the direction of the X-axis and the transverse axis (Y-axis) on the associated guide section, whereas the one guide element is movable relative to the associated guide section in the direction of the X-axis, thereby providing compensation of a potential non-parallelism between the two guide sections.
According to yet another advantageous embodiment, the one sliding element is guided in the direction of the Y-axis essentially without play on the associated guide section, thereby further improving the guiding characteristics of the window pane with respect to the Y-axis.
According to yet another embodiment of the invention, the other sliding element is formfittingly guided on the respective guide section.
According to another embodiment of the invention, the other sliding element advantageously includes an arcuate groove which receives a respective arcuate marginal section of the associated guide section. This simple arrangement provides guiding of the other guide element in the direction of the Y-axis and X-axis on the associated guide section.
Advantageously, the one sliding element may include a groove extending in the direction of the X-axis, wherein a preferably angled marginal section, which extends in the direction of the X-axis, of the associated guide section is inserted towards the groove bottom with play. This arrangement provides clearance for the one sliding element in the direction of the X-axis, taking into account variations in the spacing between the two guide sections over their respective length, thereby preventing jamming and hard movement of the will pane.
The side walls of the groove and/or the legs of the groove are preferably formed as arcuate contact surfaces for the associated guide section, and make contact in the direction of the Y-axis of the guide section essentially without play. The contact surfaces have preferably a convex shape in the direction of the guide section, thereby significantly lowering the friction resistance between the sliding element and the guide section and guiding essentially without play in the direction of the Y-axis.
The one sliding element, and preferably also the other sliding element, consist of two functional parts, namely a slider and a window pane holder which are preferably connected with one another as one piece.
According to an advantageous embodiment of the invention, the slider has an essentially U-shaped profile, wherein the end face of one leg has an inwardly pointing nose or the like. The nose engages with play with a recess in the associated guide section.
Preferably, the leg of the slider and/or the sliding element has a center opening, thereby forming two crossbars having inwardly pointing noses on their respective ends. This arrangement further improves the guiding characteristics of the sliding element and/or the slider on the guide section.
According to yet another advantageous embodiment of the invention, which can be implemented independent of the aforedescribed measures, the guide section cooperating with the one sliding element includes a partial section, with the one sliding element or the slider also being guided essentially without play in the direction of the X-axis. This partial section of the guide section is small in relation to the entire length of the guide section and facilitates assembly of the window lifting mechanism on the assembly line of the automobile manufacturer, with provisions for adjustment and compensation.
More particularly, the one sliding element is positioned without play in the partial section of the guide section when the window lifting m
Foley & Hoag LLP
Kuster Automotive Door Systems GmbH
Strimbu Gregory J
LandOfFree
Cable-operated window lifting mechanism with lateral... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cable-operated window lifting mechanism with lateral..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cable-operated window lifting mechanism with lateral... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3079776